
PageCmp: Bandwidth Efficient Page Deduplication
through In-memory Page Comparison

Mehrnoosh Raoufi
Computer Science Department

University of Pittsburgh
Pittsburgh, PA, USA
mraoufi@cs.pitt.edu

Quan Deng
College of Computer

National University of Defense Technology
Changsha, China

dengquan12@nudt.edu.cn

Youtao Zhang
Computer Science Department

University of Pittsburgh
Pittsburgh, PA, USA
zhangyt@cs.pitt.edu

Jun Yang
Electrical and Computer
Engineering Department
University of Pittsburgh
Pittsburgh, PA, USA

juy9@pitt.edu

Abstract—KSM-based page deduplication is an important
Linux system service for reducing main memory consumption
on cloud servers. However, it tends to incur large computation
and memory bandwidth overheads. Recently proposed hardware-
assisted KSM approaches, while effectively addressing the com-
putation overhead, still need to consume a dramatic amount of
off-chip memory bandwidth.

In this paper, we propose PageCmp, a PIM (Processing-In-
Memory) based page deduplication approach, to achieve band-
width efficiency on cloud servers. PageCmp exploits the bitwise
operation capability inside the DRAM cell array to enable fast
page comparison. By integrating a lightweight local comparator
inside the output buffer of DRAM modules, PageCmp sends
only the page comparison result back to the processor. Our
experimental results show that, comparing to the state-of-the-
art, PageCmp achieves 4x memory bandwidth reduction while
introducing less than 1% hardware overhead.

Index Terms—Processing-in-memory, Page deduplication,
DRAM, Bandwidth efficient, In-memory comparison

I. INTRODUCTION

Modern cloud servers widely adopt server consolidation [1],
i.e., having multiple virtual machines (VMs) and applications
hosted on one physical server, to achieve high resource uti-
lization. The aggregated memory demands from these VMs
and applications are often high, making memory one of the
most precious system resources in the system. Studies have
revealed that a large amount of memory pages from different
VMs contain the same data, making it possible to keep only
one physical copy of all pages that have the same data, this is
referred to as page deduplication.

The KSM (Kernel Same page Merging) page deduplication
has been proven to be an effective system service for reducing
memory space consumption [2]. However, KSM loads the
source and the target pages into the processor and performs
intensive byte-to-byte comparison, which not only introduces
large computation overhead, but also consumes a dramatic
amount of off-chip memory bandwidth. When having KSM
activated, the system may have to allocate a dedicated core to
perform the page comparison and consume 10GB/s off-chip
memory bandwidth [3]. To address the computation overhead,
Skarlatos et al. proposed PageForge [3] to offload the page
comparison to a specially designed comparison engine inside
the memory controller. While PageForge effectively addresses
the computation overhead, the memory bandwidth consump-
tion remains a big challenge for the system design.

In this paper, we propose PageCmp, a novel PIM
(Processing-In-Memory) design to address the bandwidth con-
sumption problem in page deduplication. We summarize our
contributions as follows.
• We exploit the capability of bulk bitwise operation in

DRAM enabled by charge-sharing to enable fast in-memory
page comparison. By returning only the comparison result to
the processor, PageCmp effectively mitigates large off-chip
bandwidth consumption caused by page deduplication.

• We propose PageCmp-Hybrid that exploits fine grained
control to terminate the page comparison early so that page
inequality comparison result can finish early. PageCmp-
Hybrid targets at achieving performance and energy con-
sumption improvements over the basic PageCmp design.

• We evaluate the proposed PageCmp schemes and com-
pare them to the state-of-the-art. Our experimental re-
sults show that PageCmp achieves 4x memory bandwidth
reduction while introduces less than 1% hardware over-
head. PageCmp-Hybrid outperforms the state-of-the-art page
deduplication by 31% and achieves up to 4x energy con-
sumption reduction.

II. BACKGROUND AND MOTIVATION

Modern cloud servers widely adopt server consolidation
to run multiple VMs on the same server. Since these VMs
often need the same libraries, packages, and drivers, they
share a significant amount of the same pages in the memory.
Page deduplication is a technique implemented in most of
hypervisors such as VMWare ESX, Xen, and Linux KVM.
The key idea is to keep only one physical copy of virtual
pages whose content happen to be the same. Deduplication
enables hypervisors to reduce the memory footprint of VMs.

Kernel Same-page Merging (KSM). Kernel Same-page
Merging (KSM) is the page deduplication service integrated
in Red Hat Linux [4]. Being the state-of-the-art open source
software-based page deduplication approach, KSM is also
utilized by the Linux KVM hypervisor to merge the same
pages across different KVM VMs. KSM is a kernel service
that, once enabled, runs continuously in the background. It
scans all pages in the memory periodically, checks whether
they are mergeable, merges identical pages, and marks them
as Copy-on-Write (CoW). KSM repeats the full scan process
at a specified frequency. Recent studies showed that KSM can
reduce the memory footprint by about 50% [5].



Mergeable pages in KSM are those that have not been
modified. Once a page is modified by an application or OS,
it is not considered as a candidate for merging. To this end,
KSM stores the hash values of pages and recomputes the hash
at each scan to determine if a page has been modified.

KSM uses two red-black trees, i.e., the Stable tree, and the
Unstable tree, to manage its scanned pages. The stable tree
keeps the pages that have been successfully merged so far
while the unstable tree keeps unmerged pages at each round.
Each node of the stable tree represents one physical page and
a list of virtual pages that share the physical page. The stable
tree is persistent and is maintained as long as KSM is running.
In contrast, the unstable tree is destroyed at the end of each
full scan. The unstable tree keeps track of the scanned pages
in the current round if no identical page is found for them
so far. At the end of each full scan round, the unstable tree
contains all unmerged pages.

For each full scan, KSM picks up a list of pages in the
memory as candidate pages for merging. Given one candidate
page, KSM computes its hash to determine if it has been
modified. KSM searches for an identical page to the candidate
in the stable tree. If it is found, it merges the candidate page
to the stable tree and marks it as CoW. In case it is not found
in the stable tree, KSM searches for an identical one in the
unstable tree. If it is found, it merges the candidate page to
that node, adds that node to the stable tree and removes the
node from the unstable tree. In case it is not found even in
the unstable tree, the candidate is added to the unstable tree
as a new node.

All the pages in the stable tree are marked as CoW.
Whenever a process initiates a write request to one of these
pages, a copy of that page is created by the OS such that
the write request is granted on the copy. This guarantees
the consistency of the physical page that is being shared by
different processes.

KSM performs an exhaustive byte-by-byte comparison be-
tween pages. The exhaustive comparison process keeps CPU
busy with a simple repetitive task. In addition, it consumes a
large amount of bandwidth. The CPU brings two pages into
its cache and uses the kernel function memcmp to compare
them byte-by-byte. memcmp can tell whether the two memory
segments are equal and if they are not which one is bigger. In
section IV, we conduct a comprehensive study on the memcmp
function call in KSM; to measure KSM bandwidth usage, and
to assess the benefit our design will achieve.

Hardware assisted deduplication. A couple of hardware
designs have been proposed to assist memory deduplication.
Tian et al. proposed [6] hardware support to merge the
same cache lines (instead of pages), which improves cache
utilization. HICAMP [7] is a hardware-based deduplication
design that introduces a completely new memory structure
for storing unique data. HICAMP is a complex design that,
in addition to memory redesign, requires new programming
models.

PageForge [3] is a recent work that introduced a hardware
accelerator inside the memory controller (MC) for improving

software-based page deduplication. It focuses on saving CPU
cycles of KSM. While PageForege effectively reduces the
computation overhead, it still demands the large bandwidth
usage. As an example, KSM and PageForge consume 10 GB/s
and 12GB/s, respectively, for a 2GB/s workload [3]. The large
bandwidth overhead motivates our design in this paper.

Processing-in-memory (PIM). Processing-in-memory
(PIM) has recently emerged as a promising solution to
address the memory wall crisis in the era of big data. PIM
moves a portion of computation to the memory, i.e., the
location where data resides. PIM improves the overall system
performance by mitigating the data movement overhead.
Ambit [8] is a recent study that exposes the great potential of
in-memory computation capability in DRAM. Ambit enables
performing bitwise AND, OR, XOR, and NOT operations
using charging sharing across multiple DRAM rows. In this
paper, we exploit the bulk in-memory computation capability
in DRAM to enable in-memory page comparison.

III. THE PAGECMP DESIGN

In this section, we discuss the PageCmp design and elabo-
rate the architecture details.

A. Overview

Figure 1 presents an overview of the PageCmp scheme.
It works as follows. When KSM is activated, the system
chooses a page P from the pool of pages to be scanned for
deduplication, and compares it to a page Q that is fetched
from the Stable tree or the Unstable tree. Given both trees are
red-black trees, the page comparison produces one of three
comparison results, i.e., ‘>’, ‘=’, or ‘<’. While the ‘>’ and
‘<’ results guide the search to the left and the right child trees,
respectively, the ‘=’ result terminates the search and enables
the page merging.

PageCmp replaces the “memcmp(P ,Q)” function in the
KSM process. The system sends the addresses of P and
Q to the memory module, which drives the two memory
pages for bitwise comparison. The in-memory comparison can
only generate the bitwise logic results, e.g., P ⊕ Q. Given
such results are distributed across different chips and lack the
ability to search in the red-black tree (using ‘>’, ‘=’, or ‘<’),
PageCmp drives them to the corresponding output buffers at
each chip and generates a local comparison result on each
chip. The local comparison results are then sent back to the
processor to determine the final comparison result.

Given a row buffer is often of 8KB and a memory page is
of 4KB, a page may occupy the first or the second half the row
buffer. To avoid misalignment during in-memory comparison,
PageCmp prepares a 8KB system buffer and copies the page
P twice to the buffer, and then compares the contents in the
buffer and Q. By default, a full KSM scan chooses 100 pages
to scan while the two trees contains hundreds of thousands
pages. As a result, the overhead of preparing the system buffer
is amortized. In the following discussion, we still use P and
Q to denote two pages to be compared and assume that they
are aligned.



Fig. 1. PageCmp organization overview.

B. The Comparison Algorithm

Assume a memory rank consists of eight DRAM chips and
the content bits of a memory page are distributed across all
chips with the interleaving unit being 64b. That is, Chip 0
stores 4096 bits, i.e., all bits 512*i to 512*i+63 with 0≤i≤63.
This is consistent with traditional memory mapping, e.g., a
64B (or 512b) cache line fetches data from all chips. The
assumption is that a page is stored in one row of a bank.
In some other configuration, a page may be interleaved over
the banks [9] but in this paper, we stick to the conventional
configuration. Note that there is one output buffer per chip and
it can hold 32, 64 or 128 bits in modern DRAM architectures
based on Micron data sheet [10]. In this paper, we assumed a
configuration that has 64-bit output buffer.

When comparing pages P and Q, PageCmp works takes the
following comparison steps.

• PageCmp first leverages the bitwise logic operation capabil-
ity in DRAM cell array [8] to compute P ⊕ Q. Each chip
only computes the partial results for the bits that it stores.

• The partial results on one chip are then driven to the
comparator inside the output buffer of the chip to determine
an 8-bit comparison summary (f1, f2, ind). The comparator
compares 64 bits at a time and finishes the comparison in
64 rounds. For the j-th round of comparison of Pj and Qj ,
each of Pj and Qj is of 64 bits, the comparator sets f1 to
1 if Pj ⊕ Qj=0, and 0 otherwise. Assuming f1 = 0, the
comparator finds the leftmost position, e.g., the m-th bit, of
bit ‘1’ of P ⊕ Q. It then sets the f2 flag as the m-th bit
value of P , and sets ind to j and Ri to m.
The m-th bit value of P indicates whether Pj > Qj or
Pj < Qj . Given this is the first bit that Pj differs from Qj ,
if f2=0, then the m-th bit of Pj is 0, indicating Pj < Qj ;
otherwise, if f2 = 1, then Pj > Qj .

• If f1 = 1, PageCmp proceeds to the next round and
overwrites (f1, f2, ind) with the summary of the new round.
If f1 = 0, PageCmp sets the summary of the current round
as the final result and skips the following rounds.

• With each chip sending back an 8-bit comparison summary,
the processor receives 8B summary from which it deter-
mines the final comparison result, i.e., P > Q, P = Q, or
P < Q.

For example, to compare P=01010101 and Q=01010100,
we use two chips with the first chip saves ‘0101’ for P and
‘0101’ for Q; the second chip saves ‘0101’ for P and ‘0100’
for Q. Each chip takes two rounds and each round compares
two bits. P ⊕Q is computed as ‘0000’ for the first chip and
‘0001’ for the second chip.

We then need to compute the comparison summary for each
chip. For the first round, both chips has ‘00’ from P ⊕Q such
that f1 = 1 and the comparison proceeds to the second round.
In the second round, the first chip has ‘00’ from P ⊕ Q so
that the final result is ‘1xxx xxxx’ with ‘x’ indicates don’t-
care bit. The second chip has ‘01’ from P ⊕Q so f1 = 0. It
then sets f2 = 1 and ind=1. The comparison summary from
the second chip is ‘0100 0001’. After receiving the comparison
results from both chips, the processor finds out the comparison
depends on the second chip summary. For the first bit that P
differs from Q, P stores bit ‘1’ so that P > Q.

C. The PIM based Page Comparison

PageCmp leverages Ambit [8] to generate P ⊕Q inside the
cell array. To analyze the XOR result we equipped PageCmp
with a small comparator inside the output buffer of each
chip to provide the local comparison summary. This section
explains the design of the comparator in details.

The comparator consists of several basic components to
compute f1, f2, ind and Ri in 64 rounds. It works as
follows. f1 is determined by a Zero Detector unit which
has a simple design of 3-level hierarchical OR and NOR
gates. To determine ind, there is a 6-bit counter inside the
comparator that increments at each round. For computing Ri,
we devised a fast and simple index generation scheme that
figure 2 demonstrates.

Index generation scheme mainly requires 3 basic units;
Leftmost One Detector, Index Mapping, Tri-state buffer. It also
reuses some partial result of the Zero Detector unit. The 6-bit
index generation works as follows. To accelerate the process,
we generate the 3 most significant bits; Rih and the 3 least
significant bits; Ril separately in parallel. For generating Ril,
we break the 64 bits into eight chucks (8 bits per chunk).
Then, we determine 3-bit index of the leftmost position of bit
‘1’ in each chunk. Thus, we will have 8 candidates for Ril,
we then need to select one of them. The 3-bit index generation



Fig. 2. PageCmp comparator design and index generation scheme.

Fig. 3. PageCmp timeline.

of each chunk works as follows. We feed each of 8-bit chunk
into a Leftmost One Detector unit that is shown in figure 2.
This circuit gets 8 bits and zeros out all of its bits except the
leftmost bit ‘1’. For instance, if it gets ”01101010”, it outputs
”01000000”. At last, this output is driven to an Index Mapping
unit. It is a simple unit that consists of 3 OR gates. It works
such that when it receives the ”01000000”, it outputs 110 that
is the index of leftmost ‘1’.

To select among 8 candidates for Ril, we reuse partial result
of Zero Detector unit, i.e., output of the second level as figure
2 indicates. It is an 8-bit result, let us call it Z. It is associated
with aforementioned 8 chunks such that if the k-th chunk is
non-zero the k-th bit of Z would be ‘1’ otherwise it would be
‘0’. Then, we feed Z into a Leftmost One Detector unit, let
the output be S. As previously discussed, only one bit of S
would be ‘1’. If n-th bit of S is ‘1’, it means the result of n-th
chunk (i.e. the n-th Ril candidate) should be selected. In other
words, n-th chunk is the leftmost chunk that is non-zero so it
contains the leftmost bit ‘1’ of the output buffer content. To
generate Rih, all we need is to feed S to an Index Mapping
unit. At last, Ri would be constructed by concatenating Rih
and Ril as figure 2 depicts.

The computed f1, Ri and ind at each round may or may
not be overwritten in the following rounds depending on value
of f1. As soon as it comes to a round that f1 = 0, PageCmp
sets f1, Ri and ind to their final result and skips the following
rounds. Then, the flag f2. needs to be set. f2 is actually the
m-th bit value of P where m is {ind,Ri}. At last, the chip will
send back comparison summary (f1, f2, ind) to the processor.
Figure 3 represents the timeline of PageCmp.

D. Summarizing Local Comparison Result

Final result is going to be determined in the memory
controller. It requires a small logic to aggregate local results.
It works as follows. First, it investigates whether all f1 flags

are zero in {LR0, . . . LR7} with LRj being the local result
of the j-th chip. If all f1 flags are zero, it then sets the final
result to P = Q. Otherwise, from {LR0, . . . LR7} it picks
those that have non-zero f1, then, among them picks the one
that has the highest ind . Let us call it LRtarget. The chip
that LRtarget belongs to, contains the overall leftmost ‘1’ in
the entire 4096×8 bits of P ⊕ Q. Hence, if f2 of LRtarget

is ‘1’, the final result is set to P > Q, otherwise it is set to
P < Q.

E. PageCmp-Hybrid Design

We proposed PageCmp-Hybrid that is an alternative design
to the original PageCmp to achieve a better performance and
energy efficiency. The motivation arose from a key observation
we made from our experiment. We exclusively studied data
transfer of memcmp invoked by KSM and determined the
distribution of page comparisons over the number of brought
cache lines (Section IV). We observed that for those com-
parisons in the category that requires memcmp to bring only
one cache line, memcmp outperforms the PageCmp in terms
of execution time. However, for the rest of categories in the
distribution, PageCmp performs faster. This happens because
bringing and comparing one cache line is pretty fast in CPU
and apparently it is not worth the overhead of entire page
comparison in memory.

Thus, we introduce PageCmp-Hybrid in which memcmp
is not entirely replaced. instead, PageCmp and memcmp are
integrated. It works as follows. For each comparison, memcmp
starts comparing byte-by-byte as usual. If it terminates after
bringing one cache line (i.e. comparing 64 bytes), there will
be no need to invoke in-memory comparison. Otherwise, CPU
requires memory controller to invoke an in-memory page
comparison which PageCmp will perform. The integration of
memcmp and PageCmp requires only a subtle modification in
KSM code. Note that despite the fact that most of comparisons
belong to the first category of distribution (i.e. requiring one
cache line comparison), the first category is neither the most
energy-consuming nor the most time-consuming one.

IV. EXPERIMENT

We made an extensive study on KSM service to analyze
its data movement overhead. Since KSM is a kernel service,



Fig. 4. Memory bandwidth consumption during page deduplication.

we profile it via modifying and recompiling the kernel source
code. Basically, we set several timers and counters inside
the kernel source code to profile KSM. To load KVM VM
guests with some workload, we run 5 applications from Tail-
bench suite [11] on them; Img-Dnn (handwriting recognition
application based on a deep neural network), Masstree (in-
memory key-value store services), Moses (statistical machine
translation system), Sphinx (speech recognition systems) and
Silo (online transaction processing systems). Table I represents
the system configuration of the experiments.

TABLE I
SYSTEM CONFIGURATION.

Hardware Specification

Processor Cores 8
Frequency 3.4GHz
Main Memory 8GB

Hypervisor & Guests

Host OS Ubuntu 16.04
Guest OS Ubuntu 16.04
Hypervisor QEMU-KVM
#VMs 5
Memory/VM 512MB

KSM Settings

sleep millisecs 100
pages to scan 100
#Full Scans (up to profiling) 5

A. Memory Bandwidth Consumption

We specifically analyzed bandwidth consumption of
memcmp function. Recall that memcmp performs a byte-by-
byte comparison. However, each time that CPU accesses the
memory it fills up one cache line which is 64B. It means, no
matter memcmp triggers comparison of 1 byte or 64 bytes, the
amount of data transferred would be 64B. Since each page is
4KB, at most 64 cache lines will be brought so there would
be 64 categories of cache lines count. We then determined the
distribution of comparisons over those categories. Note that
in our calculation we assumed only one page is going to be
brought from the main memory per comparison and the other
page is already available in the cache since it is a candidate

page. This assumption is realistic since in KSM there is always
a candidate page being compared against other pages in KSM’s
trees so that candidate page is very likely to exist in the cache.

In contrast to memcmp, PageCmp incurs a fixed amount
of 8 bytes data transfer per comparison. Thus, we calculated
the proportion of data transfer of PageCmp with respect
to KSM. Then, we borrowed the bandwidth numbers form
PageForge [3], having these two, we ultimately estimated
the bandwidth usage of our design as figure 4 illustrates.
Baseline indicates when page deduplication is disabled. Note
that the estimated reduction in data movement is only applied
to the deduplication part so bandwidth usage of PageCmp
and PageCmp-Hybrid is additive to the Baseline. As figure 4
illustrates, PageCmp and PageCmp-Hybrid can achieve up to
4x and 2.5x bandwidth saving compared to KSM, respectively.
Comparing with PageForge, PageCmp and PageCmp-Hybrid
can achieve up to 5x and 3x bandwidth saving, respectively.

Fig. 5. PageCmp execution time normalized to the baseline.

B. Execution Time

To record the execution time of memcmp, we set up a
timer that exclusively timed each memcmp function invocation.
Then, to calculate the execution time of PageCmp, we did
as follows. Mainly, there are two factors that affect the
execution time: 1) required beforehand copies, and 2) in-
memory comparison. For the first factor, we determined the
proportion of comparisons that need inter-bank and intra-bank
copies and we considered copy latency of RowClone [12] and
LISA [13] for them respectively because they are state-of-the-
art for in-memory copies. The copy time is comparable to
bitwise operation time. Nevertheless, our experiment showed
that a single search in KSM incurs on average 20 comparisons
(which means 20 invocation of memcmp function). It means, if
we copy a candidate page P into a bank, it is probable that in
several consecutive upcoming comparisons we will be using
the same page P .

For the second factor, we calculated the estimated latency of
our in-memory compactor considering the fact that a logic cir-
cuit implemented inside the DRAM memory would be slower
than expected. Based on a previous work on DRAM/logic
technology [14] we applied 22% performance degradation to



our HSPICE simulation results for latency. In addition, we
applied latency of XOR operation that Ambit [8] reported.
We also further determined that memcmp execution time
corresponds to 37% of KSM deduplication time. Provided
that percentage, we compared execution time of our design
versus the original KSM that uses memcmp function. In
figure 5 y-axis is normalized to KSM execution time. As the
figure demonstrates, PageCmp degrades performance of page
deduplication by 12% whereas PageCmp-Hybrid improves it
by 31%.

C. Performance, Energy & Area Overhead

There is a notion of busy time that figure 3 depicts. It is
the time we keep the device busy and prevent it from serving
regular memory requests. The busy time is incurred by; 1)
beforehand copies, and 2) analyzing the result of XOR by the
comparator near the output buffer. In total, PageCmp incurs
24% performance penalty for other application. However, this
overhead is reduced by PageCmp-Hybrid to 3%. It is quite
significant reduction that is achieved by avoiding in-memory
comparisons for those comparisons that are both the most-
frequent and the least time-consuming for CPU. PageCmp
incurs less than 1% area overhead to DRAM layout. Note that
the modification in layout is constrained to the output buffer
for each chip so it does not affect DRAM subarrays.

TABLE II
ENERGY CONSUMPTION PER 4KB PAGE COMPARISON.

Mechanism Energy Consumption (nJ) Energy Reduction

memcmp 80 - 5120 1x
PageCmp 341 1.3x
PageCmp-Hybrid 115 4x

Energy consumption of each in-memory page comparison
is mainly composed of three factors; 1) in-memory XOR
operation, 2) inter-bank copy. 3) sending back 8B comparison
summaries. We extracted energy consumption of each of these
factors as follows. 1) XOR operation consumes 22 nJ per
comparison. (Ambit paper reported energy consumption of
5.5 nJ/KB [8]). 2) Based on RowClone paper [12], inter-
bank consumes 1.1 µJ. 3) Molka et al. showed that data
transfer from RAM consumes 1250 pJ per byte [15], therefore,
transferring 8B comparison summaries consumes 10 nJ. We
estimated memory and channels energy consumption of our
design based on the aforementioned three factors. Table II
indicates energy consumption of the 4KB page comparison. As
it is stated in the table, energy consumption of memcmp varies
between 80 nJ to 5120 nJ. This is because number of cache
line that memcmp brings varies form 1 to 64. Note that we only
estimated energy consumption of memcmp by the amount of
its data transfer so that its computational energy consumption
is not included. Basic PageCmp consumes 1.3x less energy
than the baseline (i.e. memcmp). However, PageCmp-Hybrid
can achieve up to 4x energy reduction in comparison to the
baseline. This is because PageCmp-Hybrid exploits memcmp
for comparisons that it consumes low energy of 80 nJ.

V. CONCLUSION

We presented PageCmp, a novel bandwidth-efficient in-
memory page comparator to mitigate intensive data transfer
of page deduplication process. PageCmp achieves up to 4x
bandwidth reduction at the expense of 12% increase in page
deduplication execution time and less than 1% area overhead
to the DRAM layout. We exploit the opportunity of bulk
bitwise operation enabled by charge-sharing phenomenon in
DRAM to devise a PIM based comparison scheme. We also
proposed an alternative to our original design, PageCmp-
Hybrid that achieves up to 2.5x bandwidth reduction in addi-
tion to improving execution time by 31%. PageCmp-Hybrid is
4x more energy efficient compared to the conventional existing
approach for page comparison.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
suggestions. The work is supported in part by NSF CCF#
1718080 and NSF CCF# 1617071.

REFERENCES

[1] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and
F. Xia, “A survey on virtual machine migration and server consolidation
frameworks for cloud data centers,” J. Netw. Comput. Appl., vol. 52,
pp. 11–25, June 2015.

[2] I. Red Hat, “Kernel same-page merging (ksm),” 2019.
[3] D. Skarlatos, N. S. Kim, and J. Torrellas, “Pageforge: A near-memory

content-aware page-merging architecture,” MICRO-50 ’17, (New York,
NY, USA), pp. 302–314, ACM, 2017.

[4] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using ksm,” in In OLS, 2009.

[5] C.-R. Chang, J.-J. Wu, and P. Liu, “An empirical study on memory
sharing of virtual machines for server consolidation,” ISPA ’11, (Wash-
ington, DC, USA), pp. 244–249, IEEE Computer Society, 2011.

[6] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level cache
deduplication,” ICS ’14, (New York, NY, USA), pp. 53–62, ACM, 2014.

[7] D. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P. Stevenson, and
O. Azizi, “Hicamp: Architectural support for efficient concurrency-safe
shared structured data access,” ASPLOS XVII, (New York, NY, USA),
pp. 287–300, ACM, 2012.

[8] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-memory accelerator for bulk bitwise operations using commodity
dram technology,” MICRO-50 ’17, (New York, NY, USA), pp. 273–
287, ACM, 2017.

[9] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-cpu attacks,” in 25th USENIX
Security Symposium (USENIX Security 16), (Austin, TX), pp. 565–581,
USENIX Association, 2016.

[10] I. Micron Technology, “8gb: x4, x8, x16 ddr4 sdram data sheet,” 2018.
[11] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evalua-

tion methodology for latency-critical applications,” pp. 1–10, Sept 2016.
[12] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-

menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Rowclone: Fast and energy-efficient in-dram bulk data copy
and initialization,” MICRO-46, (New York, NY, USA), pp. 185–197,
ACM, 2013.

[13] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu,
“Low-cost inter-linked subarrays (lisa): Enabling fast inter-subarray data
movement in dram,” 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 568–580, 2016.

[14] Y.-B. Kim and T. Chen, “Assessing merged dram/logic technology,” in
1996 IEEE International Symposium on Circuits and Systems. Circuits
and Systems Connecting the World. ISCAS 96, vol. 4, pp. 133–136 vol.4,
May 1996.

[15] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Characterizing
the energy consumption of data transfers and arithmetic operations
on x86-64 processors,” GREENCOMP ’10, (Washington, DC, USA),
pp. 123–133, IEEE Computer Society, 2010.


