
IR-ORAM: Path Access Type Based Memory
Intensity Reduction for Path-ORAM

Mehrnoosh Raoufi
Computer Science Department

University of Pittsburgh
Pittsburgh, USA

mraoufi@cs.pitt.edu

Youtao Zhang
Computer Science Department

University of Pittsburgh
Pittsburgh, USA

zhangyt@cs.pitt.edu

Jun Yang
Electrical and Computer Engineering Department

University of Pittsburgh
Pittsburgh, USA

juy9@pitt.edu

Abstract—Path ORAM is an effective ORAM (Oblivious RAM)
primitive for protecting memory access patterns. Path ORAM
converts each off-chip memory request from user program to
tens to hundreds of memory accesses. While several schemes have
been proposed to mitigate the total number of memory accesses,
Path ORAM remains a highly memory intensive primitive that
leads to large memory bandwidth occupation and performance
degradation.

In this paper, we propose IR-ORAM to reduce the memory
intensity based on path access types in Path ORAM. Path accesses
in Path ORAM, while being kept oblivious to ensure privacy
protection, can be categorized to three types: paths for requested
data blocks, paths for position map blocks, and dummy paths.
We develop a set of techniques to reduce the memory intensity
of each type while ensuring the obliviousness at the same time
— we reduce the number of data blocks to access for each tree
path, reduce the number of path accesses for position maps,
and convert many dummy path accesses to early write-backs
of dirty data in LLC. Our experimental results show that IR-
ORAM achieves on average 42% performance improvement over
the state-of-the-art while effectively enforcing the memory access
obliviousness and the same level of security protection.

Keywords—memory systems; oblivious RAM; ORAM

I. INTRODUCTION

Cloud computing has become a widely adopted computing
paradigm for modern applications. While cloud computing
can greatly improve computing flexibility and scalability, and
reduce maintenance cost, there is a growing concern of its
security and user privacy [7], [13], [15], [17], [19], [35].
Hardware-assisted security schemes, e.g., XOM [31] and Intel
SGX [14], have been developed to effectively protect data
secrecy and integrity for such computing environments. How-
ever, it remains a big challenge to hide data access patterns,
in particular, for widely adopted direct-attached memory ar-
chitecture in which memory addresses are communicated off-
chip in cleartext. Leaking access patterns may reveal important
user privacy and result in severe consequences [40]. Studies
have shown that protecting user privacy at the highest level
demands ORAM (oblivious RAM) [11], [12], an expensive
crypto primitive that prevents leaking data access patterns from
obfuscating memory accesses.

Path ORAM [27] is a popular ORAM implementation that
organizes the user data to be protected in a tree structure and
converts each user memory request to one or multiple tree path

accesses. While Path ORAM reduces the memory access over-
head from O(N) in traditional ORAM [11], [12] to O(logN)
(where N is the number of data blocks of the protected memory
space), it remains a highly memory intensive primitive that
consists of path accesses of three types.

• PTp path. To determine the tree path to access, Path
ORAM uses multiple levels of position map, a.k.a.,
PosMap, tables to map user addresses to path IDs. While
an on-chip buffer can cache frequently used entries, Path
ORAM still needs to generate many PosMap accesses.

• PTd path. To access a requested data block after knowing
its path ID, Path ORAM accesses all tree nodes on the
path from the leaf node to the tree root. All data blocks
in these nodes are accessed to ensure secure protection.

• PTm path. To prevent timing channel attacks, Path
ORAM needs to generate path accesses at a fixed rate,
e.g., one path access per T cycles [9]. When it needs
to generate a path access but there is no pending real
request, Path ORAM constructs a dummy one to access
a random tree path.

Since the high memory intensity has become the main ob-
stacle that prevents Path ORAM from wide deployment, many
schemes have been proposed to mitigate memory bandwidth
usage and its impact. Maas et al. proposed to cache top
tree levels on-chip to reduce the number of data blocks to
access [22]. Nagarajan et al. proposed to create a smaller tree
such that majority accesses can be satisfied by the smaller tree,
which reduces the length of the tree and the number of blocks
per node [23]. Zhang et al. proposed to exploit the dummy
blocks of the same path to save shadow copies so that the
processor can resume execution early [38]. Unfortunately, the
memory intensity of Path ORAM remains high, which still
incurs large performance degradation to the user applications.

In this paper, we propose IR-ORAM that proactively re-
duces the memory access intensity of each path type. IR-
ORAM consists of a set of three path-type-dependent
schemes with a focus on intensity reduction, i.e., it reduces
the number of each type of path accesses to improve the
overall performance. Our contributions are as follows.
• We propose IR-Alloc, a utilization-aware node size alloca-

tion strategy, to reduce the number of data blocks to access

1

for each path, i.e., the intensity of all types of paths. IR-Alloc
exploits the observation that tree nodes at different levels
exhibit significant space utilization difference. Here, the
space utilization is defined as the portion of memory blocks
that saves real data blocks (rather than dummy blocks).
In particular, the middle level nodes show low utilization
such that we can reduce the number of blocks allocated to
these tree nodes, which effectively reduces the number of
data blocks in each path while incurring minimized impacts
on memory space and ORAM operation.

• We propose IR-Stash to reduce the number of PosMap ac-
cesses, i.e., the intensity of PTp paths. Our utilization study
reveals that the tree top mostly serves as an overflow buffer
of the on-chip stash. However, existing schemes on buffering
the tree top on-chip lead to either large space overhead or
unnecessary PosMap accesses. We therefore develop IR-
Stash that places top tree levels in a set-associative sub-
stash and maintains its tree structure using a small table.
IR-Stash helps to eliminate unnecessary PosMap accesses
at low overhead.

• We propose IR-DWB to reduce the number of dummy path
accesses, i.e., the intensity of PTm paths. IR-DWB converts
dummy paths to write-back operations of dirty LRU (least-
recently-used) entries in the LLC (last level cache), which
minimizes LLC replacement overhead while introducing no
memory contention as that in traditional eager writeback
cache designs.

• We evaluate the proposed techniques and study their effec-
tiveness in memory intensity reduction. Our experimental
results show that IR-ORAM achieves on average 42% per-
formance improvement over the state-of-the-art while effec-
tively enforcing the original memory access obliviousness
and thus the same level of security protection.
In the rest of the paper, we briefly discuss the background in

Section II. Section III describes the motivation. We elaborate
the design details in Section IV. Section V and VI discuss the
experimental methodology and the experiment, respectively.
Section VII discusses additional related work. Section VIII
concludes the paper.

II. BACKGROUND

In this section, we first present the threat model and then
briefly discuss Path ORAM and its optimizations that are
related to our design.

A. Threat Model

In this paper, we adopt the same threat model as Freecursive
ORAM [8] and other existing ORAM studies [23], [25], [27],
[32], [38]. We focus on preventing information leakage from
the memory access traces of applications running on not-
fully-trustworthy cloud servers. In such environments, the only
trusted component (i.e., trusted computing base (TCB)) is the
processor, i.e., while the processor can faithfully execute the
user application, all other components, including the OS, the
memory modules, and the memory buses, are not trustworthy.
To ensure high level data security, we need to protect data

secrecy, data integrity, and data privacy for the secure appli-
cations running on the servers.

We assume that data secrecy and data integrity are protected
with hardware-assisted security enhancements [10], [14], [29],
[31], [36]. As an example, the recently released Intel SGX
architecture saves encrypted user code and data in memory.
They are decrypted when being brought into the processor
[14]. A Merkle tree is built on the user data to prevent
unauthorized changes [10]. Existing studies showed that the
performance impacts of these enhancements are effectively
mitigated with the trustworthy crypto hardware integrated in
the processor.

In this paper, we assume the attackers have the physical
access to the servers so that they can trace and analyze all
the memory accesses. The servers adopt the direct-attached
memory architecture [16] such that, while the data on data
buses are transmitted in ciphertext, the data on address buses
and command buses are in cleartext. To protect the memory
access patterns, the baseline adopts the traditional Path ORAM
implementation [27] and its recent enhancements, as elabo-
rated in the following sections.

B. Path ORAM Basics

Path ORAM is a crypto primitive that protects memory
access patterns through obfuscating memory accesses to un-
trusted external memory [27]. As shown in Fig. 1, Path ORAM
organizes the untrusted memory space as a binary tree, referred
to as ORAM tree. An on-chip ORAM controller converts each
user memory request to a path access to the ORAM tree.

Leaf 3Leaf 2Leaf 0 Leaf 1

Level 0

Level 1

Level 2

ORAM Tree (memory side)

ORAM Controller (CPU side)

Stash On-chip PosMap

PLB

Write path3

Read path

Remap Block2

1

Fig. 1: An overview of Path ORAM (L = 3, Z = 4).

The ORAM tree has L levels ranging from 0 (the root) to
L-1 (the leaves). Each tree node, referred to as a bucket, has
Z slots to save data blocks, e.g., cache lines in this paper. The
slots store either real data blocks or dummy blocks. Given all
blocks are encrypted, the block types are indistinguishable.

The on-chip ORAM controller consists of control logic,
stash, PosMap (position map table) and PLB (PosMap looka-
side buffer). The PosMap is a lookup table that maps a block
address BlkAddr in user address space to a unique path ID in
the tree. The stash is a small fully associative on-chip buffer
that temporarily keeps a number of data blocks (e.g., 100−200
blocks) and their path IDs. Given PosMap could be big for a
large user space, we may need multiple levels of PosMap and
store these mapping entries in memory. We use PLB, a small
on-chip buffer, to cache the frequently used PosMap entries

2

such that we can reduce the number of ORAM accesses for
PosMap entries.
ORAM operations. Path ORAM converts a memory request
with BlkAddr=a to one or more path accesses to the ORAM
tree. Each path access consist of the following phases.

1) Stash, PosMap, and PLB access phase. Before accessing
the ORAM tree, the ORAM controller searches the block
in the stash and, simultaneously, translates a to a path
ID l using PLB/PosMap. The block is returned to the
user application if it is found in the stash. Otherwise,
the ORAM controller starts the read path phase if the
corresponding a-to-l mapping is found in PLB, or fetches
the mapping from memory.

2) Path read phase. Given a path ID l, the ORAM controller
reads all the blocks on l from the memory. It decrypts and
authenticates the fetched blocks, and discards the dummy
blocks and inserts the real blocks to the stash. This phase
generates L×Z memory read accesses.

3) Block remap phase. After reading the path, the ORAM
controller remaps block a to a random new path l′. It then
updates the PosMap and the stash with the new map.

4) Path write phase. After returning the requested block to
the user application, the ORAM controller writes data
blocks except a back to path l. It searches the blocks in
the stash and pushes the data blocks as low as possible in
the ORAM tree. Dummy blocks are patched if not enough
data blocks can be found. All blocks are encrypted and
authenticated before being written to the memory. This
phase generates L×Z memory write accesses.

Path ORAM may easily deplete the peak off-chip memory
bandwidth [25], resulting in large performance degradation
not only to itself but also to co-running applications [32]. In
summary, the memory bandwidth consumption of Path ORAM
has become the main obstacle that prevents its wide integration
in modern computer systems.

C. Related ORAM Enhancements

Many schemes have been proposed to improve the perfor-
mance of Path ORAM. We next discuss several closely related
enhancements. Section VII discusses more related work.

PosMap is sensitive metadata and thus requires secure
protection. Path ORAM may recursively create a new ORAM
tree for the PosMap and then a new level of PosMap. The
last level of PosMap is saved in an on-chip buffer. For better
access obliviousness and performance, Fletcher et al. proposed
Freecursive to merge all these ORAM trees such that PosMap
and data accesses are non-distinguishable [8]. In this paper, we
adopt Freecursive in the baseline. In our setting, we construct
three levels of PosMap — PosMap1 and PosMap2 are merged
in the main ORAM tree while PosMap3 is saved completely
in an on-chip buffer.

On average, Path ORAM/Freecursive introduces 8× slow-
down over a non-secure execution in our setting. Given this
large performance overhead, Path ORAM schemes are cur-
rently applied to small applications or application kernels that
are highly security sensitive.

Given the number of accessed memory blocks for each path
is linear to the path length, Maas et al. proposed to buffer a
few top levels on-chip [22]. They chose to save the tree top
in the stash — they saved up to three levels without incurring
considerable stash management overhead. Later studies [23],
[32] proposed to buffer ten or more levels, which effectively
reduces the memory bandwidth demand. Given the stash is
fully associative, maintaining a huge stash with all tree top
blocks becomes expensive. The tree top can be kept in a
standalone buffer that maintains the tree structure [23].

To achieve high security, Fletcher et al. proposed to defend
timing channel attacks by issuing path accesses at fixed rate
and pattern [9]. A dummy access is inserted if there is no real
user request pending. When a Path ORAM implementation has
different types of path accesses, it becomes more complicated.
For example, Nagarajan et al. proposed to construct an extra
smaller ORAM tree so that there exists two path lengths [23].
To prevent potential timing channels, they issue path accesses
using a fixed pattern, e.g., one main tree access after every
four path accesses to the smaller tree. Dummy path accesses
of either type are inserted as needed.

III. MOTIVATION

Since Path ORAM suffers mainly from frequent path ac-
cesses, we study the path types and the tree access patterns to
reveal the opportunities for improvements.

A. The Types of Path Accesses

The preceding discussion reveals that there are three types
of path accesses — PosMap paths, data paths, and dummy
paths. They are referred to as PTp, PTd , and PTm paths,
respectively. To understand their importance, we conduct an
experiment to evaluate the frequencies and summarize the
results in Fig. 2. The experiment settings are in Section V.
Here, PTp(Pos1) indicates the memory accesses for fetching
PosMap1 entries, i.e., the mapping from the requested data’s
block addresses to their ORAM path IDs. PTp(Pos2) indi-
cates the memory accesses for fetching PosMap2 entries, i.e.,
the mapping from PosMap1 entry’s block addresses to their
corresponding path IDs. Note that the entire PosMap3 is saved
on-chip. PTd indicates the memory accesses for fetching the
paths that contain the requested data blocks. PTm indicates
the dummy paths that are inserted due to lacking real requests
because we need to defend timing channel attacks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

ge
 o

f
A

cc
e

ss
e

s

PT_p (Pos2) PT_p (Pos1) PT_d PT_mPTp (Pos2) PTp (Pos1) PTd PTm

Fig. 2: The distribution of different path accesses.

3

From the figure, (1) while PTd accounts for 56% of the total
memory accesses, PTp is non-negligible — they are around
33% of the total. Of these accesses, PTp(Pos1) is around
4× of PTp(Pos2), indicating there are many more PosMap1

misses than PosMap2 misses to PLB. (2) PTm accounts for
a large portion as well. In this experiment, we set the inter-
path time interval T to be the same (T=1000 cycles) for all
benchmarks. Setting the same T value achieves the highest
security protection across different benchmark programs.

Alternatively, previous studies have shown that it might be
possible to set the T value according to the memory intensity
of the application. By setting a larger T value, fewer dummy
paths may be inserted but real requests may have to wait longer
before being serviced, which becomes problematic for bursty
memory requests. In addition, an attacker may observe the T
value to guess the memory intensity, introducing a potential
information leakage channel, e.g., a covert channel.

Note, even though Path ORAM has three path types, its
memory access obliviousness is securely enforced, i.e., an
attacker cannot determine the type of a particular path access
outside of the TCB — the PATH ORAM controller keeps
issuing path accesses at one per T cycles. This principle is
important for analyzing the memory access obliviousness.

To summarize, we conclude that Path ORAM contains three
types of path accesses. To effectively reduce its memory
bandwidth demand, we may develop schemes to address the
memory intensity of every type.

B. The Utilization of Tree Nodes

To prevent stash full and protocol failure, Path ORAM
keeps sufficient dummy entries in the ORAM tree — a typical
implementation uses around 50% of the protected space to
hold real data [25], i.e., we store around 4GB user data in a
8GB ORAM tree, with all the rest being dummy data blocks.

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0 0 B 0 . 1 B 0 . 2 B 0 . 3 B 0 . 4 B 0 . 5 B 0 . 6 B

 0 . 7 B 0 . 8 B 0 . 9 B 1 B 1 . 1 B 1 . 2 B 1 . 3 B
 1 . 4 B 1 . 5 B 1 . 6 B 1 . 7 B 1 . 8 B 1 . 9 B 2 B

 2 . 1 B 2 . 2 B 2 . 3 B 2 . 4 B 2 . 5 B 2 . 6 B 2 . . 7 B
 2 . 8 B 2 . 9 B 3 B 3 . 1 B 3 . 2 B 3 . 3 B 3 . 4 B

 3 . 5 B 3 . 6 B 3 . 7 B 3 . 8 B 3 . 9 B 4 B o v e r a l l a v g

Ut
iliz

ati
on

 Ra
te

L e v e l
Fig. 3: The space utilization at different tree levels.

Given an ORAM tree consists of both (real) data blocks
and dummy blocks, it is worthy to study the distribution
of dummy blocks in the tree. Fig. 3 summarizes the results
from an experiment for comparing the node space utilization
(y-axis) at different levels (x-axis). We take snapshots at
different execution times to illustrate the trend. Here, the space
utilization at a level is defined as the ratio of all useful data
blocks to the total allocated memory slots at that level. In this

experiment, we protect a 8GB memory space with 4GB user
data. We have Z=4, L=25. The block size is 64B.

To initialize the ORAM tree, we clear the tree and access
all data blocks once in a random order. For each block,
we follow the Path ORAM baseline to remap and write the
block to the tree. We create three levels of PosMap mapping
tables accordingly. While there are 64 million data blocks in
the ORAM tree, we run the memory trace for four billion
path accesses, which is sufficiently long to show the normal
access behavior, as shown in [25], [27]. Due to its excessive
length, we use a mix of path accesses from the benchmarks
(trace range [0B-3.7B]) and the randomly generated memory
accesses (trace range (3.7B, 4B]). In the figure, “XB” indicates
the snapshot after executing X billion path accesses, i.e., “0B”
is the snapshot right after the initialization. Note that the
average line indicates the overall average and not the average
of taken snapshots.

Fig. 3 presents the snapshots at different execution points
for the typical setting (as shown in the experiment section).
While a similar study was reported in [27], they focused
on choosing different bucket sizes. Instead, we make the
following observations that are new in the literature.

• The top levels (level 0 to around level 9) exhibit large uti-
lization fluctuations. For example, at level 3, the utilization
ranges from 11% to 50% and there is no clear stable range
for the long execution at each level and across different
levels. In general, the fluctuation tends to be more severe
for the level that is closer to the tree root.

• The middle levels (level 10 to around level 21) exhibit
two utilization ranges for different access patterns. For
benchmark accesses that have patterns and data reuse (i.e.,
program memory traces), the utilization fluctuates at 20%
and lower. For random accesses (i.e., synthesized memory
traces), the utilization tends to be at around 30%. The
utilization towards the end of the execution is around 30%
because we place random traces at the end of the trace mix.

• The bottom levels (level 22 to 24) exhibit larger utilization
than those of middle levels. In particular, the utilization of
the last level tends to be around 70% for random accesses
and 80% for patterned accesses. The utilization tends to
grow towards that of the last level as they approach the last
level.

When we fetch a tree path, each node contributes four data
blocks indicating even memory bandwidth consumption across
different levels. However, according to Fig. 3, we tend to get
more dummy blocks from middle levels due to their low space
utilization. In addition, a binary tree has significant capacity
imbalance — the space of level l roughly equals to the space
of all levels from 0 to l-1. While fetching top and middle
levels consumes more memory bandwidth (e.g., 21 out of 25
levels), its space accounts for a small portion, e.g., top 21
levels occupy only 6% of the total space.

Fig. 4 compares the utilization of three different workloads.
The results indicate that the utilization trend remains the same
for individual workloads.

4

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ut
iliz

ati
on

 Ra
te

L e v e l

 0 m 2 0 m 4 0 m 6 0 m 8 0 m
 1 0 0 m 1 2 0 m 1 4 0 m 1 6 0 m 1 8 0 m
 2 0 0 m 2 2 0 m 2 4 0 m 2 6 0 m 2 8 0 m
 3 0 0 m 3 2 0 m 3 4 0 m 3 6 0 m 3 8 0 m

 4 0 0 m o v e r a l l a v g

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ut
iliz

ati
on

 Ra
te

L e v e l

 0 m 2 0 m 4 0 m 6 0 m 8 0 m
 1 0 0 m 1 2 0 m 1 4 0 m 1 6 0 m 1 8 0 m
 2 0 0 m 2 2 0 m 2 4 0 m 2 6 0 m 2 8 0 m
 3 0 0 m 3 2 0 m 3 4 0 m 3 6 0 m 3 8 0 m

 4 0 0 m o v e r a l l a v g

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ut
iliz

ati
on

 Ra
te

L e v e l

 0 m 2 0 m 4 0 m 6 0 m 8 0 m
 1 0 0 m 1 2 0 m 1 4 0 m 1 6 0 m 1 8 0 m
 2 0 0 m 2 2 0 m 2 4 0 m 2 6 0 m 2 8 0 m
 3 0 0 m 3 2 0 m 3 4 0 m 3 6 0 m 3 8 0 m

 4 0 0 m o v e r a l l a v g

Fig. 4: The space utilization behavior per benchmark; gcc (left), lbm (middle), and a random trace (right).

In summary, there exists a significant mismatch of node
space utilization, memory bandwidth, and space capacity
across different tree levels.

C. The Block Migration Behavior

To understand the reason why an ORAM tree exhibits
distinct utilization difference across different tree levels, we
further study how a data block migrates in an ORAM tree.

a level k1

a

Stash

l m

level 0

ORAM tree

a level k1

a

Stash

q m

level 0

ORAM tree

a level k2

(a) Move a to a top level

in the ORAM tree

(b) Move a deeper

 in the ORAM tree

Fig. 5: The migration behavior after a leaves the stash.

In Path ORAM, each path access has two memory phases
— a read phase and a write phase. During the write phase,
we choose data blocks from the read phase, pre-existing data
blocks in stash, and/or dummy blocks and place them in the
path. A pre-existing block is a block that was in the stash
before the read path phase. The observation is, if we pick up
a pre-existing data block, we tend to place it to a top level.
For example, in Fig. 5(a), a is a pre-existing block. Assume
we read path l and write blocks back to l, and we pick up
a (mapped to path m) from the stash and write it to level
k1. We observe that k1 tends to be a small value, i.e., k1 is
close to the root. This is because (1) any two paths overlap
(because the root belongs to all paths); and (2) two random
paths tend to have small path overlap. The latter is true because
two paths overlap, e.g., at level 15, only if they belong to the
same subtree at level 15. However, there are 32K different
subtrees at this level, making the overlap possibility very low.
In contrast, there are only 8 subtrees at level 3, it has higher
possibility for two paths to overlap at level 3. Of course, due
to limited capacity at top levels, a pre-existing data block may
not get the chance to be moved to the ORAM tree.

We also observe that data blocks fetched from the read path
are likely to be flushed to the same or lower levels. Fig. 5(b)
illustrates how it works. Assume a (with path ID m) was
written to level k1 (as in Fig. 5(a)). Now, we access another

path q where path l and q overlap from level 0 (the root) to
level k2. we may not touch a if k1>k2; and write to k2 if
k1≤k2. Due to the low utilization in middle levels, such write
is likely to be successful.

We conduct an experiment to compare the node reuse at
different levels. Fig. 6 summarizes the hit counts at different
levels. From the figure, while top 10 levels account for less
0.01% of total ORAM space, the requested data blocks can
be found in these levels for about 23% of total accesses.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

ge
 o

f
H

it
s

Bottom Middle Top

Fig. 6: Nodes at top levels have high reuse possibility.

Therefore, the top levels of an ORAM tree serve as an
overflow buffer of the on-chip stash. An accessed data block
may be buffered temporarily in the stash and then written to
the top levels of the tree. As the execution proceeds, a hot
block is likely to be brought back to the stash to reuse while a
cold block gradually sinks towards the leaf nodes of the tree.

IV. THE IR-ORAM DESIGN

A. An Overview

In this paper, we develop IR-ORAM to exploit our findings
to reduce the memory intensity of each type of path accesses.

• We develop IR-Alloc to reduce the bucket sizes of middle
level tree nodes. By exploiting the low utilization of middle
level nodes, IR-Alloc reduces the number of data blocks to
access for each ORAM path and thus the memory intensity
of all three types of paths.

• We develop IR-Stash to architect a double-indexed set-
associative sub-stash to adapt to large tree top caching.
It reduces the number of PosMap accesses and thus the
memory intensity of PTp paths.

• We develop IR-DWB to convert dummy path accesses to use-
ful early write-back operations, which reduces the memory
intensity of PTm paths.

5

B. IR-Alloc: a Utilization-aware Node Size Allocator for Re-
ducing Intensity of PTp/PTd /PTm paths

Traditionally, an ORAM tree uses one Z value, i.e., all
buckets have the same number of data blocks. However, our
study reveals that nodes at middle levels have considerable
low utilization, indicating that 70% or more fetched data
from these levels are dummy blocks and thus discarded after
fetching. For this reason, it would be beneficial to shrink the
bucket size at these levels. As an example, if we shrink the
bucket to half of the original, we would read 50% fewer blocks
for buckets at these levels.

... ...

...

...
Upper middle levels

 Z=2

Top levels

 Z=0 (in memory)

 =4 (in on-chip cache)

Lower middle levels

 Z=3

Bottom levels

 Z=4

Fig. 7: The design of IR-Alloc scheme.
Fig. 7 illustrates how IR-Alloc works. It adopts an allocation

strategy with more than two Z values: Z=2, 3, and 4 for tree
level ranges [10, 16], [17, 19], and [20, 24], respectively. 1 For
completeness, we set Z=0 for memory allocation for tree level
range [0, 9]. We will elaborate the details in the next section.
With this allocation strategy, IR-Alloc only needs to access
43 data blocks (=10×0+7×2+3×3+5×4) during one read (or
write) path phase. As a comparison, we need to access 60 and
100 blocks, respectively, for the Path ORAM designs with and
without a 10-level top tree cache.

We next study the design issues in IR-Alloc. (1) One issue
is the reduction of the total ORAM space as there are fewer
block slots. This is negligible because the allocation in Fig.
7 only leads to around 0.9% space reduction. This is because
most of the space of a binary tree is from lower levels. For
example, the space from top 20 levels account for around 3.1%
of the total space. (2) Another issue is that, while the middle
levels satisfy the overall space demand, a particular tree node
may not have the space to hold the chosen data block. Such
a tree node may be able to hold that block if adopting the
baseline Path ORAM implementation. This is in general not a
problem as the ORAM controller would save the data block to
a higher tree level, and eventually increase stash usage. As we
experience more path accesses, the block still have the chance
to sink towards to the leaf node.

The background eviction. The original Path ORAM places
blocks that cannot move to the ORAM tree in the stash tempo-
rally [27] and faces protocol failure if the stash overflows, i.e.,
it has insufficient space to hold the blocks after reading a path.
Ren et al. introduce background eviction, which effectively

1Here we use the math range representation, i.e., level range [a, b] indicates
levels a, a+1, a+2, ..., b.

converts the correctness problem to a performance/overhead
trade-off [25].

Since IR-Alloc reduces the number of empty slots on each
path, fewer blocks may be moved to the ORAM tree during
the write path phase, which increases the possibility of stash
overflow. While it does not lead to security concern, too many
background evictions may degrade performance significantly.
We will analyze its security in Section IV-E and study its
performance impact in Section V.

Choosing Z values. In this work, we adopt a greedy search
algorithm to determine the Z values at different levels. This
algorithm is based on empirical studies (as in the community
and also shown in Fig. 3) that a random trace maximizes the
utilization of stash entries as well as middle tree levels. Given
an ORAM tree, we test run Path ORAM using random memory
traces under two constraints: (1) the space reduction is within
1%; and (2) the increase of background evictions is within
15%. According to Fig. 3, random memory traces gives the
worst case space utilization for middle levels, the focus of IR-
Alloc. We observe that a 15% or less increase of background
evictions for random traces exhibits negligible increase of
background evictions for benchmark traces. We start with
setting Z=3 for level 19 (depending on the tree size) and Z=4
for all other levels, and gradually shrink lower levels Z values
for finding a local maximal in performance improvement. The
algorithm depends only on the ORAM configuration and, in
particular, not on applications. Once the ORAM configuration
is determined, we just go through the search process once
and make the choice applicable for all deployed systems.
Therefore, the search overhead is negligible in general. Note
that we may want to run the search twice, once for IR-Alloc
and once for IR-Alloc+IR-Stash as the background eviction
rate may differ.

C. IR-Stash: a Double Indexed Stash Implementation for
Reducing Intensity of PTp Paths

Caching top tree levels is an effective way for reducing
memory intensity. Maas et al. proposed to merge the top three
levels to the stash and slightly increase the stash size to hold
these blocks [22]. However, a major issue of this design is its
scalability — the stash needs to be expanded to hold (2m-1)×Z
more blocks if we cache top m levels. In addition, the stash
needs to be fully associative. The stash may be accessed by
the LLC using its block address (to determine if the requested
block is in the stash), or by the ORAM controller using its
path ID (to determine the blocks to expurge at write path
phase). Therefore, it complicates the access if we make the
stash a direct map (or a set associative) cache by indexing it
using either the block address or the path ID. Unfortunately,
integrating a fully associative buffer is expensive. For example,
if we cache top 12 tree levels, the enlarged stash has at least
16K entries. The corresponding die area is about that of a 4MB
8-way set associative LLC. Thus, it becomes less preferable
when we need to move more top tree levels on-chip.

An alternative design is to buffer tree top in a dedicated
on-chip cache and access them according to the tree structure,

6

LLC

Tag (Data, Path ID)

F-Stash
(Addr, Data, Path ID)

S-Stash
TT

ORAM

controller

001

010 011

100 101 110 111

 000 001 010 011 100 101 110 111 Path ID:

Tree Top

Table Address:

Path ID=010

Table entries

to access are

“0...01X..X”,

For 3 levels,

 we have

001 001
01X 01a
1XX 1ab

a b ...

(a) A set-associative stash to cache tree top (b) An example showing how to access tree top entries

001
010

111
......

xx

x

a=0, b=1

Fig. 8: Exploit IR-Stash to effectively cache large tree top.

i.e., as they are in the memory [32], [39]. The stash can
remain small (below 200 entries). In this design, the dedicated
cache can only be accessed by the ORAM controller and thus
is invisible to the LLC. Each ORAM path consists of two
segments — top levels are in the buffer while the others are
in the memory. The dedicated cache design harvests most of
the benefits in caching. In particular, when reading a path, we
search the buffer first. A buffer hit eliminates off-chip traffic
and thus there is no need to remap.

A major issue with the dedicated cache design is the
increased PosMap accesses. To determine if a data block is
in the dedicated cache, the LLC needs to know the path ID
of the block, which demands finding its Posmap entry. This
access is necessary if the block is in the memory. However, if
the block is in the cache, the PosMap access is a waste. Based
on the discussion in Section III-C, the top tree levels have a
small size but a higher reuse possibility, which increases a non-
negligible number of PosMap accesses. A PosMap access, if
missed in PLB, results in a full path access, which significantly
degrades the Path ORAM performance.
The IR-Stash Design. Fig. 8 illustrates our IR-Stash design.
Intuitively, we include a large sub-stash for buffering the tree
top entries and make it double-indexed to facilitate both LLC
and ORAM accesses. The reason why IR-Stash can reduce
the intensity of PTp paths is that, if the tree top is indexed
only by block addresses, a large number of PosMap accesses
would be required to support ORAM path accesses. IR-Stash
consists of two sub components.
(1) A small fully-associative stash F-Stash that has around

200 entries. F-Stash is the same as the traditional stash.
(2) A set-associative stash S-Stash that keeps blocks from

the tree top. S-Stash is double-indexed. For the cache
organization, it is indexed using the block address (in
user space).
S-Stash is also indexed by a small pointer table TT ,
which helps to keep the tree structure of the blocks in
S-Stash. Each entry in TT corresponds to a bucket and
saves four pointers pointing to the data entries in S-Stash
that save the data blocks contents and their path IDs. We
skip the code with all zeros, assign the code “00..01” as
the table address of the root node, and then continue the
table address assignment level-by-level according to the
tree structure.
In the example in Fig. 8(b), we cache top three levels and
illustrate their table addresses.

We next describe how IR-Stash supports the accesses from

both LLC and the ORAM controller. When LLC issues a
request for a data block, it uses its block address to search
both sub-stashes in parallel. Given F-Stash is small and fully
associative, and S-Stash is set indexed by block addresses, the
access is fast and incurs low access overhead. A hit in either
F-stash or S-Stash returns the block immediately and thus
incurs no path access or path remapping.

When the ORAM controller needs to access the tree top
using a path ID, it follows the same Path ORAM protocol.
The only difference is that the tree top is stored on-chip
and thus uses TT table to identify the corresponding entries
in S-Stash. To read a path, the ORAM controller reads the
memory portion of the path and then the on-chip portion.
For the on-chip portion, we need to access multiple buckets
and access each bucket using its table address. By employing
the coding strategy as discussed above, we can infer the
tables addresses of these buckets. Note that maintaining TT
is necessary because S-Stash is indexed by block address (in
user space) which is different from the physical address of
block location in the tree.

Assume the path to access is “a1a2...ai....” (1≤i≤ L-1)” and
we cache top t levels on-chip, we need to access t buckets and
their table addresses are:

(t-1) zeros︷ ︸︸ ︷
00...00 1,

(t-2) zeros︷ ︸︸ ︷
00...00 1a1,,

1 zero︷︸︸︷
0 1a1...at−2, 1a1...at−1

For each table entry, we follow its four pointers to fetch
the block contents and their path IDs in S-Stash. To write a
path, we follow the Path ORAM protocol to search F-Stash
and choose the data blocks to write back at each level. To
improve caching effectiveness and avoid address conflicts, S-
Stash indexes the blocks using MD5 of their addresses. Our
experiments show that it evenly distributes the blocks.

When the ORAM controller fills in new blocks in the treetop
buckets, we enter the chosen blocks in S-Stash and update the
pointers accordingly. If a block from F-Stash cannot be moved
to S-Stash because the target cache set is full, we skip picking
this block for this round and get it flushed to S-Stash or a
memory bucket at a later time.

At context switch, we flush the entries in F-Stash to the
ORAM tree. Since the entries in S-Stash are cached tree bucket
entries, they are encrypted, authenticated, and then written
back to their corresponding memory locations. The TT table is
then discarded. We rebuild the table to resume the execution.

7

D. IR-DWB: Converting Dummy Path Accesses for Reducing
Intensity of PTm paths

To mitigate the performance impact of dummy path ac-
cesses, we propose IR-DWB to convert them to useful mem-
ory accesses. IR-DWB converts dummy accesses into free
early write-back of dirty blocks in LLC. Intuitively, IR-DWB
searches for the dirty LLC entries that are likely to be written
back in the near future, writes them to the memory of these
entries, and marks these entries as clean so that it incurs
low overhead when they are selected for replacement. Since
dummy accesses are exploited for this matter, these early
write-backs occur at no extra cost in terms of performance.

Fig. 9 illustrates how IR-DWB works. It consists of two main
subtasks: (1) finding the appropriate dirty LLC entry; and (2)
writing the dirty entry to memory. For the first subtask, we
keep a register Ptr that points to the dirty LRU entry of one
LLC cache set. We round-robin across all sets and search for
the LRU entry when the LLC is idle. If the LRU entry of
the current set is not dirty, we proceed to the next cache set.
If the pointed entry is accessed and thus no longer an LRU
entry, we clear Ptr (even if it is locked as discussed next) and
proceed to the next cache set. If no entry can be found, we
pause the search for 1000 cycles and restart from a random
set. To implement a round-robin search, we used a small state-
machine similar to autonomous eager writeback in [18] that
is also adopted by [28], [34]. Alternatively, candidates can be
chosen by maintaining a queue as in eager queue scheme in
[18]. The latter approach can be adopted in case hardware
overhead is a tight constraint.

IR-DWB

control

dirty LRU entry

LLC

Ptr

useful memory access

PLB

PosMap3

stage

Fig. 9: The design of IR-DWB scheme.

For the second subtask, we need up to three ORAM path
accesses due to PosMap and data accesses, i.e., two ORAM
path accesses for PosMap1 and PosMap2, respectively, and
one path access for the dirty data block. For this purpose, we
keep a register Stage to indicate if the corresponding LLC
entry is ready to be written to the memory. We set Stage=3
if neither PosMap1 or PosMap2 mapping can be found in
PLB; Stage=2 if PosMap2 is a PLB hit while PosMap1
is a miss; and Stage=1 if both can be found in PLB.

To defend timing channel attacks, Path ORAM issues path
accesses at fixed rate and inserts dummy paths when there
is no real request. IR-DWB optimizes the implementation as
follows. When it is time to issue a dummy path access, IR-
DWB checks if Stage=0 (indicating no LRU entry write-back
is in progress). If Stage ̸=0, IR-DWB continues the unfinished
dirty entry flush; otherwise, it locks Ptr and proceeds to flush

the dirty LRU entry pointed by Ptr. Depending on if we need
PosMap accesses, we set Stage=3 for accessing PosMap2
and Stage=2 for accessing PosMap1; and Stage=1 if both
PosMap entries are ready so that we can write the dirty data
block. We decrement Stage after each path access and mark
the corresponding LLC entry as clean when Stage=0. During
this processing, if the dirty LLC entry pointed by Ptr is no
longer a LRU entry, we abort the early eviction by setting
Stage=0; or if the entry is chosen as a victim entry, we
abort the early eviction by setting Stage=0 and perform the
normal eviction instead.

From the discussion, for maximized benefit, IR-DWB re-
quires three dummy path accesses to write the selected LLC
entry back to the memory. In practice, we gain benefits if
we have one or two dummy path accesses and thus can only
partially service the request.

Delayed Block Remapping. IR-DWB currently works with
the traditional LLC eviction strategy, i.e., a data block is
remapped after its access; it is then placed in the LLC [8], [27],
[37]. An LLC-evicted data block, if being dirty, becomes a new
memory access. Alternatively, Nagarajan et al. [23] proposed a
delayed data block remapping policy [23]. It works as follows.
After accessing a data block, the ORAM controller discards
its mapping, which eliminates the data block from the ORAM
tree. The data block is added back to the ORAM tree when
it is evicted from the LLC. Under this policy, the writeback
block uses the ORAM-removed block in stash and thus shall
not increase stash pressure. However, there is a limitation, i.e.,
it demands PosMap accesses at write-back time. Given the
corresponding PosMap entry for servicing the initial access
may not be in the PLB, it needs up to two extra full path
accesses for PosMap entries. The LLC and memory are not
inclusive under this policy.

Comparing the two data block remapping policies, the
delayed remapping tends to introduce extra PosMap access
overhead when most of evicted data blocks from LLC are
clean. As shown in the experiment section, while the delayed
remapping improves the overall baseline performance, it may
slowdown the read intensive benchmarks by more than 50%.

To integrate IR-DWB with delay data block remapping, we
may proactively conduct block remapping for LRU entries
in LLC, and convert dummy paths to PosMap accesses to
eliminate the overhead at write-back. We may need extra table
for the generated remapping and thus leave it to future work.

Comparison. IR-DWB shares the similarity with eager
writeback [18] for speeding up the traditional write-back LLC.
Both schemes evict the dirty LLC entries before they are
chosen for replacement. However, they differ as follows. (1)
eager writeback tends to increase off-chip memory bandwidth
demand. IR-DWB only exploits dummy path accesses. Since
dummy path accesses consume the bandwidth anyway, IR-
DWB does not introduce extra memory bandwidth demand.
(2) eager writeback may degrade the program execution as
an ongoing writeback request may block a user request that
otherwise can be issued. IR-DWB does not hurt the current
or the next request as a dummy path access needs to finish

8

before the ORAM controller may issue another path access.
Converting the dummy access does not degrade the execution.
(3) one eager writeback can be serviced by one extra memory
access while one IR-DWB may need up to three dummy paths.

E. Security and Correctness Analysis

Security Guarantee. Path ORAM is a security primitive
that protects user privacy through memory address obfusca-
tion. It achieves memory obliviousness with two uniformity.

(1) Path accesses are not distinguishable. Even though there
exists read or write user requests, and ORAM path accesses
can be categorized as three types (data block access, dummy
path access, and PosMap access), all path accesses look the
same. An attacker outside of TCB cannot distinguish either
the memory request type or the path access type.
Note, each path consists of one bucket access (or Z block
accesses) to each tree level. Given the memory addresses are
in cleartext, the tree access is non-oblivious, i.e., an attacker
knows exactly when and what tree nodes are accessed.

(2) Access intensity is not distinguishable. By enforcing
timing attack protection, the ORAM controller issues one
path access every T cycles. An attacker outside of TCB
cannot infer the path access type or application behavior.
In particular, if timing attack protection is not enforced, the
first path access of a burst of several path accesses is more
likely to be a PosMap access.
In this section, we show that IR-ORAM enforces the above

uniformity and thus the same level of security protection.
While IR-Alloc reduces the number of blocks read from some
tree levels, all paths are kept the same. Each individual path
fetches the same number of block from a particular tree level
so that we cannot distinguish the type of a particular path
from the rest of all others. Similarly, eliminating access tree
top nodes in IR-Stash and converting dummy paths to useful
paths in IR-DWB keep the obliviousness of path accesses.

The non-uniformity introduced in IR-Alloc, e.g., we fetch
two blocks from level 12 and four blocks from level 23, leaks
no sensitive information. This is because memory addresses
are in cleartext, and the block-to-tree-level mapping is public
information in the original Path ORAM design. Since it is
well known how the bucket sizes are adjusted, exposing node
level non-uniformity has no security concerns. For the top tree
cache design, we will not start off-chip memory accesses until
we know if the requested block is in the on-chip sub-stashes
and prevent potential information leakage.

In summary, the ORAM paths in IR-ORAM are kept the
same pattern and at the fixed rate. Thus, it ensures the same
level of security protection as that in the original Path ORAM.

Correctness Guarantee. IR-ORAM does not introduce
correctness issue either. IR-ORAM changes the way how
the stash and the ORAM tree are constructed, which in-
creases the possibility of stash overflow. In the basic Path
ORAM implementation, the protocol fails if a stash overflow
happens. Ren et al. introduced background eviction [25],
which effectively converts the protocol correctness problem
to a performance/overhead trade-off. In IR-ORAM, we enable

background eviction if there are more blocks than a threshold
after any write path phase. In summary, IR-ORAM does not
introduce correctness issue to Path ORAM.

V. EXPERIMENT METHODOLOGY

To evaluate IR-ORAM, we used a trace-based simulator
USIMM for cycle-accurate DRAM memory simulation [6].
This is similar to the setting that was adopted in recent Path
ORAM studies [23], [32]. As shown in Table I, we modeled a
4-issue OoO (out-of-order) 3.2GHz processor. There are two
levels of data cache with the LLC (last level cache) being
8-way set associative 2MB. We modeled the ORAM tree
following the typical setting [8], [23], [38] — we protect 8GB
memory with 4GB user data. We use Z=4, L=25 for baseline.

To collect the trace for evaluation, we used Pin tool [21]
on SPEC CPU2017 suite [1]. For each program, we skipped
the warmup phase and then collected the trace that covers 2M
L1 cache misses. We also picked a few traces obtained from
PARSEC suite [5], [6]. Table II lists the L2 misses per kilo
instruction (MPKI) for all the benchmarks we picked.

TABLE I: System configuration.
Processor Configuration

Processor Fetch Width/ ROB Size 4 / 128
Memory Channels 4
DRAM Clk Frequency 800 MHz

L1 D-cache 2-way 256KB
L2 cache (LLC) 8-way 2MB

ORAM Configuration

Protected space and user data 8GB/4GB
ORAM tree levels 25
Bucket size/Block size 4 / 64B
Stash entries 200
Dedicated tree top cache 256KB (4K entries)

On-chip PLB / PosMap 64KB / 512KB

TABLE II: Evaluated benchmarks.
read write read write

Suite Benchmark MPKI MPKI Benchmark MPKI MPKI

SP
E

C

gcc 0.1 0.3 bwa 0.0 20.7
mcf 19.5 0.1 lbm 0.0 45.3
xz 24.9 29.6 cam 0.01 8.8
xal 0.05 0.1 ima 0.3 2.9
dee 0.0 5.7 rom 0.02 23.0

PA
R

SE
C bla 2.6 0.4 fre 2.1 0.4

str 2.7 0.5

VI. EXPERIMENTAL RESULTS

We implemented and compared the following schemes.
• Baseline: this is the traditional Path ORAM imple-

mentation [27] that adopts Freecursive [8] and has ten
top tree levels cached in dedicated on-chip cache. It also
adopts the subtree layout to improve row buffer hits and
background eviction to prevent stash overflow [25].

9

0

0.5

1

1.5

2

2.5

3
Sp

e
e

d
u

p
 Rho IR-Alloc IR-Stash IR-DWB IR-ORAM LLC-D

Fig. 10: The performance comparison of different schemes.

• Rho: it is the ρ design [23] over Baseline. Rho
implements a smaller tree and several other optimizations.
We chose the best setting (L=19, Z=2) for the small tree,
included other optimizations, and enforced the defense
for timing channel attacks (we used 1:2, i.e., one main
tree access per two accesses to the smaller tree).

• IR-Alloc: it implements IR-Alloc over Baseline.
We set Z=1 for tree level range [10,15], and Z=2 for
[16,18].

• IR-Stash: it implements IR-Stash over Baseline.
For S-Stash, we tested different set associativities and
choose 4-way set associative in this paper.

• IR-DWB: it implements IR-DWB over Baseline.
• IR-ORAM: it integrates all three designs in our paper. It

is built on top of Baseline. (It sets Z to 2 and 3 for
tree level ranges [10,16] and [17,19], respectively.)

• LLC-D: it adopts the delayed data block remapping
policy [23] on top of Baseline.

• IR-Stash+IR-Alloc (LLC-D as baseline): it is
IR-Alloc and IR-Stash on top of LLC-D.

A. Performance Comparison

Fig. 10 compares the performance of different schemes.
The results are normalized to Baseline. mix bar indicates
mix trace of 3 different benchmarks. From the figure, Rho
achieves an average of 11% improvement. It exhibits a large
degradation on mcf . This is due to the mechanism integrated
for defending timing channel attacks, which inserts many
dummy paths and offsets the benefit from accessing the
smaller tree. This reduction may be mitigated if making the
defense application-specific (currently we used 1:2 ratio).

For our schemes, IR-Alloc achieves on average 41% im-
provement over Baseline. The improvement comes mainly
from the reduced number of data blocks to access for each
path. Since we reduce the memory intensity of all path
types, the improvements are stable across all benchmark
programs. IR-Stash achieves on average 27% improvement
over Baseline. Given both Baseline and IR-Stash

cache top ten levels of the tree, the improvement comes mainly
from the reduction of PosMap accesses. IR-DWB achieves
on average 5% performance improvement. When there were
more dummy path accesses, e.g., gcc in the figure, we found
more opportunities for conversion, which helped to achieve
higher improvement. For benchmarks having few dummy path
accesses, e.g., cam and dee, IR-DWB was rarely activated,
which led to close to zero performance impact.

When enabling all three proposed schemes, IR-ORAM
achieves on average 57% improvement over Baseline, or
42% improvement over Rho.
LLC-D improves Baseline for most of the benchmarks

due to their high dirty eviction rate. However, a read intensive
benchmark like mcf experiences 1.9× slowdown. Fig. 11
illustrates the speedup of IR-Stash+IR-Alloc over a
baseline that adopts LLC-D. Our two schemes can effectively
improve a baseline with LLC-D adopted by 72% on average.
We observe a high speedup of 1.63× for mcf . This is because,
with LLC-D baseline, the number of hits in the tree top
triples for this benchmark such that IR-Stash finds more
opportunities to reduce the number of PTp path accesses.

0

0.5

1

1.5

2

2.5

Sp
e

e
d

u
p

IR-Stash+IR-Alloc (LLC-D as baseline)

Fig. 11: The performance comparison with LLC-D as baseline.

Since IR-Stash and IR-Alloc are orthogonal to timing
channel protection feature, we also measured their speedup
without having timing channel protection. Our results showed

10

that IR-Alloc achieves slightly smaller speedup compared
to when timing channel protection was enabled (40% vs 41%
in Fig. 10). This is expected because with timing channel
protection being enabled some background eviction accesses
are reduced due to existence of inevitable dummy accesses.

By developing path type dependent techniques, IR-ORAM
effectively reduces the memory intensity of the Path ORAM.

B. IR-Alloc Overflow
While IR-Alloc changes the Z values for two tree level

ranges, the discussion in Section IV-B indicates that this
selection is not unique — we may choose different Z values
for different tree level ranges, and all such selections may give
good performance improvements.

g c c m c f o m n x a l b l a d e e b w a l b m f r e c a m i m a s t r r o m a v g
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e I R - A l l o c 1 I R - A l l o c 2 I R - A l l o c 3 I R - A l l o c 4

Fig. 12: Design exploration of IR-Alloc scheme.
To study the selection of Z values, we composed four

configurations that set Z values for different tree level ranges
as follows. PL indicates the number of data blocks we need
to fetch per path. For all configurations, the memory shrinks
below 1%. Of course, there are more configurations available.

• IR-Alloc1:Z=2 for L10∼16, Z=3 for L17∼19 PL=43
• IR-Alloc2: Z=2 for L10∼16, Z=2 for L17∼18 PL=42
• IR-Alloc3: Z=1 for L10∼14, Z=2 for L15∼18 PL=37
• IR-Alloc4: Z=1 for L10∼15, Z=2 for L16∼18 PL=36
Fig. 12 compares the performance of different IR-Alloc

configurations. The results are normalized to execution time
of Baseline. For each bar, the shaded portion indicates the
time spent on background eviction. IR-Alloc4 is the same
as IR-Alloc in Fig. 10. From the figure, in general, we tend
to achieve larger performance improvement by reducing the
number of data blocks to access per ORAM path. In addition,
aggressively reducing the number of data blocks tends to incur
large time in background eviction.

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0 0 B 0 . 1 B 0 . 2 B 0 . 3 B 0 . 4 B 0 . 5 B 0 . 6 B

 0 . 7 B 0 . 8 B 0 . 9 B 1 B 1 . 1 B 1 . 2 B 1 . 3 B
 1 . 4 B 1 . 5 B 1 . 6 B 1 . 7 B 1 . 8 B 1 . 9 B 2 B

 2 . 1 B 2 . 2 B 2 . 3 B 2 . 4 B 2 . 5 B 2 . 6 B 2 . . 7 B
 2 . 8 B 2 . 9 B 3 B 3 . 1 B 3 . 2 B 3 . 3 B 3 . 4 B

 3 . 5 B 3 . 6 B 3 . 7 B 3 . 8 B 3 . 9 B 4 B o v e r a l l a v g

Ut
iliz

ati
on

 Ra
te

L e v e l
Fig. 13: Level utilization with IR-Alloc.

To study background eviction, Fig. 13 shows the level
utilization experiment similar to that in Section III-B for

IR-Alloc. Snapshots were taken at different times of the
execution using the same memory trace mix as in Fig. 3.

From the figure, we observed that, for memory accesses
from benchmarks, the top and middle tree levels show high
space utilization ratios than those before adopting IR-Alloc,
i.e., the utilization ratios in Fig. 3. However, they are still low,
meaning in general, the background eviction is still low.

For randomized traces, the utilization ratios are much
higher, i.e., more than 50% utilization. In particular, we rarely
found empty slots for tree nodes between level 0 and level
3. This indicates there is a high possibility of stash overflow.
However, most benchmark programs have stable working sets
and IR-Alloc achieves performance improvements over the
Path ORAM implementation.

C. PosMap Reduction

We next investigated the effectiveness of IR-Stash in
reducing position map accesses. Fig. 14 reports the normal-
ized PosMap accesses of IR-Stash over Baseline. From
the figure, IR-Stash dramatically reduces the number of
PosMap accesses — on average, the number of PosMap
accesses in IR-Stash are 49% of those in Baseline.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

o
sM

ap
 A

cc
e

ss
 R

at
io

Fig. 14: Comparing PosMap accesses with Baseline.

For benchmarks that have large reduction, e.g., 94% for dee,
IR-Stash achieves large improvement of 87%. For the one
with small reduction, e.g., mcf , it achieves low improvement.

D. Dummy Path Accesses

IR-DWB is designed to exploit dummy accesses in timing
channel protection mode for early write-backs. Fig. 10 shows
its speedup. We also investigated its effectiveness in converting
dummy accesses. Fig. 15 illustrates the percentage of each path

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
e

rc
e

n
ta

ge
 o

f
A

cc
e

ss
e

s

PT_p (Pos2) PT_p (Pos1) PT_d DWB PT_mPTp (Pos1)PTp (Pos2) PTd PTm

Fig. 15: Access type distribution in IR-DWB.

11

access type. On average, IR-DWB reduces the percentage of
dummy accesses from 11% to 6%.

E. Scalability Analysis

To evaluate the scalability of IR-Alloc, we used different
sizes of protected memory, i.e., 2GB (L=24) and 8GB (L=26),
and summarized the results in Fig. 16. For each configuration,
we applied the Z finding algorithm accordingly to find the
appropriate Z value at each level. We used the random traces
as they set the performance lower bound while exhibiting
high probability in background eviction. Fig. 16 compares the
speedup of IR-Alloc over Baseline for different memory
sizes. The x-axis indicates the size of user data which is half of
the entire protected space. We conducted the experiment for 13
different random traces and reported the average speedup. The
standard deviation of different speedup results is low (=0.0001)
as random traces lack locality.

2 G B
(L = 2 4)

4 G B
(L = 2 5)

8 G B
(L = 2 6)

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

Sp
ee

du
p

Fig. 16: The scalability analysis of IR-Alloc.

Impact of block size. When adopting larger blocks, e.g.,
by a cloud server with remote clients, the PosMap becomes
smaller, which may be stored completely within TCB. This
eliminates the potentials that IR-ORAM can explore from
IR-Stash. However, the benefits from IR-Alloc remain
untouched.

F. Overheads
Space overhead. By reducing the bucket sizes of selected

tree levels, IR-Alloc reduces the total memory space.
However, this reduction is negligible, the different IR-Alloc
configurations in Section VI-B keep the space loss below 1%.

The IR-Stash design, comparing to the dedicated tree top
cache design, keeps the tree structure in a small table, which
saves (210 − 1) × 4 pointers and each pointer is of 12 bits.
The total size is 6KB. In addition, it saves the tag array that
the dedicated tree top cache may not need. This overhead is
modest comparing to the enlarged stash design.

Energy overhead. The energy overheads comes from (1) the
extra stash evictions introduced by IR-Alloc; (2) the extra
table lookups in IR-Stash; and (3) the extra LLC/PLB
accesses for finding the IR-DWB candidates. Given the energy
consumption of Path ORAM comes mainly from memory
accesses, the on-chip activities are negligible. For example,
one access to 256KB cache is around 0.6nJ while an access
to 1GB memory is about 40nJ [4]. The more extra stash
evictions, the higher energy overhead the IR-ORAM may have.
In our experiments, the number of extra stash evictions is

low, incurring less than 5% of total energy consumption.
Our energy saving in the memory systems is proportional to
performance improvement, i.e., about 57% over Baseline.

VII. RELATED WORK

Ren et al. proposed Ring ORAM to reduce memory band-
width at path access time with background tree reshuffle
[24]. IR-ORAM adjusts the construction of the ORAM tree
and thus is orthogonal and can be integrated to achieve
better performance. Yu et al. proposed PrORAM to improve
Path ORAM performance by constructing superblocks for
prefetching [37]. Zhang et al. proposed to eliminate accessing
overlapped portion of consecutive paths [39]. Wang et al.
proposed to mitigate the interference of Path ORAM on co-
running processes on the same server [32]. Path ORAM was
also enhanced for its adoption for cloud services [20], [26].

By adopting secure memory architectures, memory access
patterns on the buses can be effectively protected with hard-
ware enhancements [2], [3]. Wang et al. proposed to achieve
high level privacy protection by adopting Path ORAM for
emerging BOB (buffer-on-board) memory architecture [33].
In addition to defending user privacy, hardware-assisted secu-
rity enhancements are developed to mitigate the performance
impact of data authentication [30].

VIII. CONCLUSIONS

In this paper, we propose IR-ORAM, a Path ORAM op-
timization that consists of a set of techniques, to mitigate
the high memory intensity of Path ORAM. In particular, we
propose IR-Alloc to reduce the number of data blocks that
we need to access for each tree path; IR-Stash to buffer top
tree levels, which hybrids the extended stash and dedicated
cache designs to achieve effective PosMap access reduction;
IR-DWB to convert a significant portion of dummy path
accesses to write back dirty LRU entries in LLC. On average,
IR-ORAM achieves 42% performance improvement over the
state-of-the-art while effectively enforcing the memory access
obliviousness and the same level of security protection.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive
suggestions. The work is supported in part by NSF CCF#
2011146 and NSF CCF# 1910413.

REFERENCES

[1] SPEC CPU 2017 Benchmark Suite, 2017. [Online]. Available:
https://www.spec.org/cpu2017

[2] S. Aga and S. Narayanasamy, “Invisimem: Smart memory defenses
for memory bus side channel,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017.

[3] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “Obfusmem: A low-
overhead access obfuscation for trusted memories,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture, 2017.

[4] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization, 2017.

[5] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, 2011.

12

[6] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. H. Pugsley, A. N.
Udipi, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm : the
utah simulated memory module,” 2012.

[7] I. Damgård, S. Meldgaard, and J. B. Nielsen, “Perfectly secure oblivious
ram without random oracles,” in Proceedings of the 8th Conference on
Theory of Cryptography, 2011.

[8] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas,
“Freecursive oram: [nearly] free recursion and integrity verification for
position-based oblivious ram,” in Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2015.

[9] C. W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas,
“Suppressing the oblivious ram timing channel while making informa-
tion leakage and program efficiency trade-offs,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture,
2014.

[10] B. Gassend, E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches
and merkle trees for efficient memory authentication,” in Proceedings
of 9th International Symposium on High Performance Computer Archi-
tecture, 2003.

[11] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987.

[12] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” J. ACM, vol. 43, 1996.

[13] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious ram sim-
ulation,” in Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms, 2012.

[14] Intel, Intel Software Guard Extensions, 2014. [Online]. Available:
https://software.intel.com/en-us/sgx

[15] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in 19th
Annual Network and Distributed System Security Symposium, 2012.

[16] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk,
2007.

[17] L. M. Kaufman, “Data security in the world of cloud computing,” IEEE
Security Privacy, 2009.

[18] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager writeback- a tech-
nique for improving bandwidth utilization,” in Proceedings 33rd Annual
IEEE/ACM International Symposium on Microarchitecture, 2000.

[19] C. Liu, M. Hicks, and E. Shi, “Memory trace oblivious program execu-
tion,” in 2013 IEEE 26th Computer Security Foundations Symposium,
2013.

[20] L. Liu, R. Wang, Y. Zhang, and J. Yang, “H-oram: A cacheable oram
interface for efficient 1/o accesses,” in 2019 56th ACM/IEEE Design
Automation Conference, 2019.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2005.

[22] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song, “Phantom: Practical oblivious computation
in a secure processor,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 2013.

[23] C. Nagarajan, A. Shafiee, R. Balasubramonian, and M. Tiwari, “ρ:
Relaxed hierarchical oram,” in Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019.

[24] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and

S. Devadas, “Ring ORAM: closing the gap between small and large
client storage oblivious RAM,” IACR Cryptol. ePrint Arch., 2014.

[25] L. Ren, X. Yu, C. W. Fletcher, M. van Dijk, and S. Devadas, “Design
space exploration and optimization of path oblivious ram in secure
processors,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture, 2013.

[26] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace : Oblivious memory
primitives from intel SGX,” in 25th Annual Network and Distributed
System Security Symposium, 2018.

[27] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: An extremely simple oblivious ram protocol,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013.

[28] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, “The
virtual write queue: coordinating dram and last-level cache policies,”
2010.

[29] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Aegis: Architecture for tamper-evident and tamper-resistant process-
ing,” in Proceedings of the 17th Annual International Conference on
Supercomputing, 2003.

[30] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: reducing
paging overheads in SGX with efficient integrity verification structures,”
in Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems, X. Shen,
J. Tuck, R. Bianchini, and V. Sarkar, Eds., 2018.

[31] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” in Proceedings of the 9th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2000.

[32] R. Wang, Y. Zhang, and J. Yang, “Cooperative path-oram for effective
memory bandwidth sharing in server settings,” in 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture, 2017.

[33] R. Wang, Y. Zhang, and J. Yang, “D-oram: Path-oram delegation for
low execution interference on cloud servers with untrusted memory,” in
2018 IEEE International Symposium on High Performance Computer
Architecture, 2018.

[34] Z. Wang, S. M. Khan, and D. A. Jiménez, “Improving writeback
efficiency with decoupled last-write prediction,” in 2012 39th Annual
International Symposium on Computer Architecture (ISCA), 2012.

[35] P. Williams and R. Sion, “Single round access privacy on outsourced
storage,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, 2012.

[36] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003.

[37] X. Yu, S. K. Haider, L. Ren, C. Fletcher, A. Kwon, M. van Dijk,
and S. Devadas, “Proram: Dynamic prefetcher for oblivious ram,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 2015.

[38] X. Zhang, G. Sun, P. Xie, C. Zhang, Y. Liu, L. Wei, Q. Xu, and C. J. Xue,
“Shadow block: Accelerating oram accesses with data duplication,” in
51st Annual IEEE/ACM International Symposium on Microarchitecture,
2018.

[39] X. Zhang, G. Sun, C. Zhang, W. Zhang, Y. Liang, T. Wang, Y. Chen,
and J. Di, “Fork path: Improving efficiency of oram by removing redun-
dant memory accesses,” in 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture, 2015.

[40] X. Zhuang, T. Zhang, and S. Pande, “Hide: An infrastructure for
efficiently protecting information leakage on the address bus,” in Pro-
ceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2004.

13

