
Improving Performance and Space Efficiency of Secure Memory with ORAM

by

Mehrnoosh Raoufi

Bachelor of Science, University of Tehran, 2017

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2024



UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Mehrnoosh Raoufi

It was defended on

March 29, 2024

and approved by

Dr. Youtao Zhang, Department of Computer Science

Dr. Xulong Tang, Department of Computer Science

Dr. Stephen Lee, Department of Computer Science

Dr. Jun Yang, Department of Electrical and Computer Engineering

ii



Copyright © by Mehrnoosh Raoufi

2024

iii



Improving Performance and Space Efficiency of Secure Memory with ORAM

Mehrnoosh Raoufi, PhD

University of Pittsburgh, 2024

In modern computing, safeguarding user privacy has become a major challenge. Data

content can be protected via encryption. However, encryption cannot hide the location of

the data being accessed and thus may leak the access pattern to the adversary. Studies have

shown that the access pattern can leak sensitive information about the user such as medical

records, user identity, and financial information. In contemporary computer systems, the

processor chip integrates a memory controller on-chip and transmits memory addresses and

device commands in cleartext on memory buses. Therefore, even if the data is encrypted,

one can snoop on the bus and untrusted off-chip memory and infer sensitive information

via observing the memory address trace of a user program. ORAM (Oblivious RAM) is

an expensive cryptographic technique that obfuscates access patterns. When ORAM is im-

plemented in the processor, it converts each off-chip memory request from a user program

into tens to hundreds of memory accesses. While ORAM provably hides the access pattern,

thereby bringing privacy protection, from the system perspective, it incurs significant over-

head. ORAM requires continuously shuffling user data in the memory. Not only does it slow

down the execution of user programs, but it also imposes substantial memory space demand.

This dissertation aims to minimize ORAM overhead from different aspects by introducing

various architectural techniques. The goal is to make ORAM more desirable for wide adop-

tion, thereby enabling modern computing systems with efficient, privacy-preserving secure

memory. The dissertation analyzes the most popular ORAM implementations and their lat-

est optimizations in the literature to expose ORAM inefficiencies in terms of performance,

and space demand. Then, it strives to alleviate these inefficiencies. It reduces the memory

intensity of ORAM by decreasing the number of memory accesses needed per user request,

thereby reducing bandwidth overhead and improving ORAM performance. It also reduces

ORAM memory space demand by reclaiming invalidated memory blocks in ORAM and

saving further DRAM space through the introduction of a hybrid-memory ORAM design.

iv



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Case for Protecting Access Patterns . . . . . . . . . . . . . . . . . . . . 1

1.2 ORAM Overhead and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.0 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Memory Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Memory Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Security and Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 ORAM Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 ORAM History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Path ORAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Operation Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Key Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Ring ORAM Optimization . . . . . . . . . . . . . . . . . . . . . . . . 20

3.0 IR-ORAM: Path Access Type Based Memory Intensity Reduction for

Path-ORAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Intensity Reduction Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 The Types of Path Accesses . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 The Utilization of Tree Nodes . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 The Block Migration Behavior . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The IR-ORAM Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



3.3.2 IR-Alloc: a Utilization-aware Node Size Allocator for Reducing Inten-

sity of PTp/PTd /PTm paths . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 IR-Stash: a Double Indexed Stash Implementation for Reducing Inten-

sity of PTp Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.4 IR-DWB: Converting Dummy Path Accesses for Reducing Intensity of

PTm paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.5 Security and Correctness Analysis . . . . . . . . . . . . . . . . . . . . 42

3.4 Experiment Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.2 IR-Alloc Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.3 PosMap Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.4 Dummy Path Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.5 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.6 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.0 AB-ORAM: Constructing Adjustable Buckets for Space Reduction in

Ring ORAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Space Reduction Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Ring ORAM Space Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Ring ORAM with Bucket Compaction . . . . . . . . . . . . . . . . . . 57

4.2.2 Broad Impact of Space Reduction . . . . . . . . . . . . . . . . . . . . 58

4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Studying Dead Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Studying Space/Performance Trade-off . . . . . . . . . . . . . . . . . 61

4.4 The AB-ORAM Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Remote Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2.1 One Extra Level of Address Mapping . . . . . . . . . . . . . . 63

4.4.2.2 Tracking Dead Blocks . . . . . . . . . . . . . . . . . . . . . . 65

vi



4.4.2.3 Remote Allocation . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 Altering the S Value for Space Savings . . . . . . . . . . . . . . . . . 68

4.4.3.1 Extending the S Value with Remote Allocation . . . . . . . . 68

4.4.3.2 The Non-uniform S Value . . . . . . . . . . . . . . . . . . . . 70

4.4.4 Comparison to the State-of-the-arts . . . . . . . . . . . . . . . . . . . 71

4.5 Security and Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 Remote Allocation is Secure . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 Altering the S Value is Secure . . . . . . . . . . . . . . . . . . . . . . 73

4.5.3 Empirical Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.4 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.1 Main Results of Space and Performance . . . . . . . . . . . . . . . . . 78

4.7.2 Bucket Reshuffle Impact . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.3 DR Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.4 Dead Block Lifetime Analysis . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.5 NS Design Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.6 Remote Allocation Effectiveness . . . . . . . . . . . . . . . . . . . . . 82

4.7.7 Generalizability Over Different Applications . . . . . . . . . . . . . . . 84

4.7.8 Storage Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.0 EP-ORAM: Efficient NVM-Friendly Path Eviction for Ring ORAM in

Hybrid Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 DRAM Saving Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 EP-ORAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Trade-offs of Adopting ORAM in DRAM/NVM Memory . . . . . . . 88

5.2.2 Trade-offs among Ring ORAM Operations . . . . . . . . . . . . . . . 89

5.2.3 Under-utilized Middle Levels in Ring ORAM Tree . . . . . . . . . . . 90

5.2.4 The EP-ORAM Design . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 DRAM Space, NVM Traffic and Performance Analysis . . . . . . . . . 96

5.3.2 EP-ORAM Design Exploration . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3 Utilization Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.0 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 ORAM for Recommendation Systems . . . . . . . . . . . . . . . . . . 103

6.2.2 Merkle Tree for Position Map Access Reduction . . . . . . . . . . . . 105

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

viii



List of Tables

1 System configuration for IR-ORAM evaluation. . . . . . . . . . . . . . . . . . . 44

2 Evaluated benchmarks from SPEC and PARSEC suite. . . . . . . . . . . . . . . 45

3 Organization of bucket metadata in Ring ORAM and AB-ORAM. . . . . . . . 67

4 Summary of the state-of-the-art ORAM implementations. . . . . . . . . . . . . 71

5 System configuration for AB-ORAM evaluation. . . . . . . . . . . . . . . . . . . 77

6 Evaluated benchmarks of SPEC suite. . . . . . . . . . . . . . . . . . . . . . . . 77

7 System configuration for EP-ORAM evaluation. . . . . . . . . . . . . . . . . . . 95

ix



List of Figures

1 ORAM incurs a large performance degradation. . . . . . . . . . . . . . . . . . . 4

2 Each user request is translated to multiple path accesses. . . . . . . . . . . . . . 5

3 ORAM’s space demand significantly burdens the system. . . . . . . . . . . . . . 6

4 Contribution of each level to memory accesses and to the size of the ORAM tree. 8

5 Overview of performance and space efficiency improvements. . . . . . . . . . . . 10

6 The threat model adopted in the dissertation. . . . . . . . . . . . . . . . . . . 17

7 An overview of Path ORAM (L = 3, Z = 4). . . . . . . . . . . . . . . . . . . . 19

8 Ring ORAM tree organization (L = 3, Z ′ = 3, S = 4, and Z = 7). . . . . . . . 21

9 Ring ORAM tree organization and operations with L = 3. . . . . . . . . . . . 23

10 The distribution of different path accesses. . . . . . . . . . . . . . . . . . . . . 27

11 The space utilization at different tree levels. . . . . . . . . . . . . . . . . . . . 28

12 The space utilization behavior per benchmark; gcc (left), lbm (middle), and a

random trace (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

13 The migration behavior after block a leaves the stash. . . . . . . . . . . . . . . 31

14 Nodes at top levels have high reuse possibility. . . . . . . . . . . . . . . . . . . 32

15 The design of IR-Alloc scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

16 Exploit IR-Stash to effectively cache large tree top. . . . . . . . . . . . . . . . . 36

17 The design of IR-DWB scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

18 The performance comparison of different schemes. . . . . . . . . . . . . . . . . . 46

19 The performance comparison with LLC-D as baseline. . . . . . . . . . . . . . . 47

20 Design exploration of IR-Alloc scheme. . . . . . . . . . . . . . . . . . . . . . . . 48

21 Level utilization with IR-Alloc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

22 Comparing PosMap accesses with Baseline. . . . . . . . . . . . . . . . . . . . . 51

23 Access type distribution in IR-DWB. . . . . . . . . . . . . . . . . . . . . . . . . 51

24 The scalability analysis of IR-Alloc. . . . . . . . . . . . . . . . . . . . . . . . . 52

25 Dead blocks over time for different benchmarks. . . . . . . . . . . . . . . . . . 60

x



26 Dead blocks across the levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

28 AB-ORAM adds one more level of address mapping in the insecure domain. . . 64

29 An overview of remote allocation in AB-ORAM. . . . . . . . . . . . . . . . . . 65

30 Empirical study on AB-ORAM security implication. . . . . . . . . . . . . . . . 75

31 Space saving and performance overhead comparison of different schemes. . . . . 79

32 Bandwidth impact of AB-ORAM. . . . . . . . . . . . . . . . . . . . . . . . . . 80

33 Comparing number of bucket reshuffles across the levels. . . . . . . . . . . . . . 80

34 Sensitivity analysis of DR to the number of levels. . . . . . . . . . . . . . . . . 81

35 Dead blocks lifetime across ORAM tree levels. . . . . . . . . . . . . . . . . . . 82

36 Design exploration of NS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

37 AB-ORAM capability for extending the S value. . . . . . . . . . . . . . . . . . 83

38 Generalizability analysis of AB-ORAM. . . . . . . . . . . . . . . . . . . . . . . 84

39 Slowdown of Ring ORAM in hybrid memory compared to DRAM (Hybrid-NVMx

indicates saving x bottom levels in NVM). . . . . . . . . . . . . . . . . . . . . 88

40 Bucket utilization across Ring ORAM tree levels (Utilization=1.0 means saving

Z ′ blocks in one bucket). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

41 An overview of the EP-ORAM design in hybrid memory system. . . . . . . . . 92

42 DRAM space demand of different schemes. . . . . . . . . . . . . . . . . . . . . 96

43 NVM writes reduction of EP-ORAM compared to Hybrid-NVM2. . . . . . . . . 97

44 Performance comparison of EP-ORAM and Hybrid-NVM2. . . . . . . . . . . . 97

45 NVM writes reduction with different configurations of EP-ORAM compared to

Hybrid-NVM3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

46 Performance improvement with different configurations of EP-ORAM compared

to Hybrid-NVM3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

47 Comparing EP-ORAM and Hybrid-NVM4 slowdown. . . . . . . . . . . . . . . . 100

48 Bucket utilization of EP-ORAM and the baseline across levels. . . . . . . . . . 100

49 Timeline of path access in a large embedding setup with a 4-level PosMap table. 106

50 The PosMap block layout with the Merkle tree PosMap scheme. . . . . . . . . . 108

51 The total memory access reduction achieved with the Merkle PosMap scheme. . 109

xi



Preface

PhD, as much as being a Doctor of Philosophy, means doctor of perseverance to me. It is

about having faith in exploring the unknown for the slightest potential of an idea and having

the courage to walk away once it has been proven ineffective. I have learned that the latter

is as important as the former. One cannot achieve scientific expertise unless one remains

impartial to facts and findings. Oscillating between thinking my research could change the

world and feeling that my research does not matter, it has been quite a roller coaster, but

it was a wonderful journey that was worth the ride. It is not about changing the world, but

rather about contributing your part, no matter how insignificant it may seem. These are the

insights I will carry into my future career now that this journey has reached its end.

I would like to express my gratitude to all the people who helped me during the PhD

program. Sincere thanks to the academic community that made this experience possible. I

would like to thank my advisor, Professor Youtao Zhang. He shaped my scientific thinking.

I will cherish the countless insightful and in-depth discussions we have had over the years

that profoundly enriched my problem-solving paradigm. I am grateful to him for all the

accomplishments I was able to achieve during my PhD. It would not have been possible

without his guidance. My thanks also go to Professor Xulong Tang for all his help, guidance,

and encouragement. I would also like to express my gratitude to the rest of my dissertation

committee: Professor Stephen Lee and Professor Jun Yang for their valuable input and

constructive feedback.

I would like to thank the community of the University of Pittsburgh. I will remember

my time there fondly. My heartfelt appreciation goes to this university for caring about

students’ mental and physical well-being. I would also like to thank all my friends. They

made it possible for me to survive far away from home.

To my family, I dedicate this dissertation. For their love is my cornerstone. I would like

to thank them for their infinite and unwavering support, and for always believing in me. I

would not have reached this point without them. Though they live far away, they are always

in my heart and my drive to keep moving forward.

xii



1.0 Introduction

1.1 The Case for Protecting Access Patterns

Outsourcing of data and computation is an indispensable aspect of this digital era. In

today’s context, users entrust cloud service providers with their data more than ever before.

This reliance extends not only to individuals but also to businesses such as insurance cor-

porations and banks, which utilize remote servers for both computation and data storage.

Consequently, safeguarding user data becomes paramount. Regarding data protection, one

might instinctively turn to encryption as the ultimate solution. While encryption, coupled

with authentication schemes, can indeed shield the content of user data, it alone proves

insufficient in thwarting adversaries from inferring sensitive information. The issue lies in

access pattern leakage.

Many research studies have shed light on the privacy risks associated with access pattern

leakage, even when the data content is completely encrypted and protected. There are

numerous works revealing the threat of access pattern attacks on searchable encrypted data

servers. Researchers have demonstrated that by exploiting the access pattern, an untrusted

server holding encrypted user data can leak sensitive information. This includes users’ queries

or the secret attributes of every record in the database, such as salary, age, or location. In

some cases, it may also reveal the correlation between a secret attribute and other attributes

in the database, such as name, gender, or occupation. Ultimately, an adversary could infer

confidential information regarding users’ personal preferences, financial status, or health

conditions, posing a significant threat to user privacy [36, 8, 38, 27, 39, 28, 41].

The pattern of a program’s memory accesses can reveal much about its behavior or the

encrypted data it processes. For instance, the memory access pattern of a program can be

used to reconstruct the program control flow graph, which can lead to the identification of the

program being executed. Leakage of the program control flow information can potentially

lead to the compromising of a secret key. This is because conditional branches make a

comparison between two values and then decide which path to take. Thus, knowledge of

1



the program control flow can reveal information regarding the values being compared in a

conditional branch instruction [86].

One recent study has shown that exploiting access patterns of sparse features in deep

learning-based recommendation systems can lead to private data leakage. The study char-

acterizes various attacks that can be carried out on these sparse features, leading to the

extraction of users’ private information or tracking users over time. The study shows that

even when data is fully encrypted, an attacker can still learn information about which entries

of the sparse features are non-zero through the embedding table access pattern. This infor-

mation leakage can pose a significant threat to user privacy. The study has shown that it is

possible to identify a user, extract sensitive attributes of a user, or re-identify a user, by only

looking at the embedding table access pattern, even when the data within the embedding

table is fully encrypted [31].

As discussed above, the threat of access pattern leakage affects data storage servers,

program execution in trusted processors while communicating with untrusted memory, and

embedding tables in deep learning-based recommendation systems. In all cases, access pat-

tern leakage poses a significant threat to user privacy. Therefore, to safeguard user privacy,

one must pay attention to access pattern protection. Recent studies have shown that to fully

protect the access pattern, ORAM (Oblivious RAM) must be adopted. Although ORAM

offers bullet-proof access pattern obfuscation and is particularly appealing from a security

point of view, it comes with significant overhead. This, in turn, makes ORAM less desirable

for widespread adoption from a system perspective.

The goal of this dissertation is to improve how ORAM utilizes system resources. While

many of the techniques introduced in this dissertation are applicable to other configurations

as well, the focus of this dissertation and its evaluation methodology is on the secure processor

and untrusted main memory configuration. The next section explains the overhead and

challenges associated with implementing ORAM in modern computing environments. The

subsequent section enumerates the contributions of this dissertation towards mitigating those

overheads.

2



1.2 ORAM Overhead and Challenges

Oblivious RAM (ORAM) is a cryptographic primitive which obfuscates the access pat-

terns [25, 26]. ORAM aims to safeguard a user program’s memory access pattern when

interacting with untrusted external memory on a remote server. Despite data encryption,

transmitting addresses in plain text exposes vulnerabilities, enabling adversaries to track

accessed locations and potentially leak sensitive user information. To fortify complete user

privacy, protecting the memory access pattern is crucial. Nevertheless, ORAM has a huge

overhead. Not only does it slow down the user program execution, but it also imposes a

large memory space and bandwidth overhead.

At a very high level, ORAM keeps data items randomly shuffled in memory. When the

user wants to access one data item, ORAM translates it into many accesses to different

memory locations. After the access, the data item is remapped to another location; the

blocks that have already been read are reshuffled, re-encrypted, and written back to mem-

ory. Therefore, ORAM converts each memory request from the user’s program into tens to

hundreds of memory accesses. And since it needs to constantly shuffle data blocks around,

it requires allocating some extra space in memory.

Path ORAM [66] is a popular ORAM implementation that organizes the user data to be

protected in a tree structure and converts each user memory request to one or multiple tree

path accesses which translates to tens to hundreds of memory accesses. Path ORAM requires

2× as memory space as an unprotected baseline. Half of the memory space is filled with

dummy blocks in Path ORAM to ensure paths always have enough space to accommodate

a real block. Note that this is crucial because paths are chosen randomly and the protocol

would fail if a path overflows.

Memory access overhead in traditional ORAM [25, 26] was O(N) (where N is the number

of data blocks of the protected memory space) since they demanded a full memory scan.

Whereas in Path ORAM, the overhead is reduced to O(logN) since the data blocks are

organized in a full binary tree.

A variety of Path ORAM optimizations have been proposed over the years, all attempt-

ing to mitigate the high overhead associated with Path ORAM. Nevertheless, Path ORAM

3



remains a highly memory-intensive primitive that incurs significant performance overhead.

Path ORAM, equipped with its key enhancements (which will be discussed in Section 2.3.2),

as illustrated in Figure 1, incurs an average slowdown of 8× compared to non-secure execu-

tion.

0

2

4

6

8

10

12

14

16

Sl
o
w
d
o
w
n

28

Figure 1: ORAM incurs a large performance degradation.

There are two main reasons behind Path ORAM performance degradation: 1) each user

request translates into one or multiple path accesses, and 2) each path access is expensive,

involving hundreds of memory accesses. Figure 2 illustrates the average number of path

accesses required for each benchmark in our experiment settings. As shown in the figure, for

some benchmarks, this number can be as high as 3.6 path accesses per user request.

In Path ORAM, each access consists of two phases: the read path phase and the write

path phase. The read phase involves reading all the memory blocks along a path in the

ORAM tree, including both real and dummy blocks. Similarly, the write phase entails

writing a number of memory blocks equal to the length of the entire path to the ORAM

tree. In this protocol, half of the bandwidth is on the critical path of execution; to service

the user’s request, an entire path is read from the ORAM tree. It is only after the read path

phase is completed that the block of interest can be returned to the user who requested it.

The block transfer of this portion of the access, i.e., the read path phase, is on the critical

4



2 . 5

1 . 5

2 . 7

3 . 6

1 . 6
2

1 . 7 1 . 4 1 . 4 1 . 3

2 . 9

1 . 6 1 . 7 2

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0

1

2

3

4

# P
ath

 Ac
ce

ss
 pe

r R
eq

ue
st

Figure 2: Each user request is translated to multiple path accesses.

path of execution.

Ren et al. proposed a different approach to achieve a breakthrough in speeding up the

Path ORAM protocol at the expense of extra memory space [58]. They proposed Ring

ORAM, which speeds up Path ORAM by 2.7× while increasing the space demand. Next,

the discussion will delve into the philosophy behind the performance vs. space demand

trade-off exploited in devising their design on top of Path ORAM.

Ring ORAM optimizes Path ORAM protocol by distinguishing between the online and

offline bandwidth phases of ORAM tree access and deferring some memory accesses from

the online phase to the offline phase. The online bandwidth refers to the portion of the

block transferred until the user’s request is served. In other words, it is the amount of blocks

transferred until the access is complete from the user’s point of view. In Ring ORAM design,

the number of memory accesses in the online phase is reduced and accessed memory blocks

remain invalidated until they are refreshed by one of Ring ORAM’s write-back operations

later on during the offline phase. From the user’s perspective, this approach ensures that

access is completed more quickly, allowing the user program to resume earlier. This results in

a speedup of the overall system performance. However, it incurs significant space overhead.

Figure 3 demonstrates that in a typical setting, as discussed in [58], user data occupies

5



only 20.8% of the ORAM tree space, with the remainder dedicated to dummy space, which

constitutes the majority of the memory space.

7 9 . 1 7 %

2 0 . 8 3 %
 U s e r  D a t a
 D u m m y  S p a c e

 

 

O R A M  T r e e  S p a c e

Figure 3: ORAM’s space demand significantly burdens the system.

1.3 Contribution Overview

As discussed in the previous section, performance and space overhead of ORAM are

two challenges that can affect each other. The optimization of the ORAM protocol, which

achieves considerable performance improvements, wastes memory space resources. While

the speedup may be appealing, the large space demand hinders widespread adoption in

secure processor configurations, given that memory is a particularly precious resource in

these systems. To progress ORAM toward practicality, I formulate the following questions:

(i) Can we speed up ORAM’s performance without excess space demand?

(ii) Can we minimize ORAM’s space demand without sacrificing performance improvements?

6



In pursuit of an answer to question (i), an exploration of the Path ORAM protocol was

undertaken to pinpoint the root cause of its memory intensity. Analysis was conducted on

all types of path accesses within this protocol. Subsequently, efforts were made to alleviate

the costs linked with each type of path access, aiming to diminish the memory intensity of

ORAM and thereby enhance its performance. The introduction of IR-ORAM is the outcome

of this study, which is a scheme consisting of three techniques for reducing memory intensity.

In pursuit of an answer to question (ii), an investigation into Ring ORAM optimiza-

tion was conducted to identify the source of space wastage. Subsequently, AB-ORAM was

introduced, employing two techniques to reclaim wasted space during execution, thus en-

hancing the space efficiency of ORAM. Additionally, exploration was undertaken into a

hybrid DRAM/NVM memory configuration to further conserve precious DRAM space while

implementing Ring ORAM. This exploration led to the introduction of EP-ORAM, an NVM-

friendly ORAM design.

The mission of this dissertation is to exploit opportunities for improving the performance

and space efficiency of ORAM. Although there are numerous key observations that have led to

the contributions of this dissertation, which I will elaborate on in the corresponding chapters,

there is one key insight worth mentioning here as it guides schemes for both objectives. The

insight is that the number of memory accesses grows linearly with the path length. In

contrast, the ORAM tree size grows exponentially with respect to the path length, as shown

in Figure 4a and Figure 4b, respectively. This implies that a reduction in the bucket size at

the upper levels of the tree can result in considerable performance improvement while having

a negligible effect on the ORAM tree capacity. Conversely, reducing the bucket size of a few

bottom levels can result in a significant reduction in space while having a negligible impact

on performance. This key insight—the contrast in the contribution of each level to the

number of memory accesses versus space—is one of the main insights that has illuminated

the opportunities leading to the contributions of this dissertation in terms of improving the

performance and space efficiency of ORAM. The following will provide an overview of the

contributions made in this dissertation.

Performance. As discussed in the previous section, Path ORAM performance overhead

stems from two main issues: each user request is translated into multiple path accesses, and

7



0 2 0 4 0 6 0 8 0 1 0 0 1 2 00

5 0

1 0 0

1 5 0

2 0 0

2 5 0
Me

mo
ry 

Ac
ce

ss
es

 #

P a t h  L e n g t h
(a) Number of memory accesses per path access
grows linearly w.r.t. the path length.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0

OR
AM

 Tr
ee

 Si
ze

 (G
B)

P a t h  L e n g t h
(b) The ORAM tree size grows exponentially
w.r.t. the path length.

Figure 4: Contribution of each level to memory accesses and to the size of the ORAM tree.

each path access, in turn, consists of hundreds of memory accesses, making it very expensive

and degrading the overall performance of program execution. Therefore, the goal of this

dissertation is to analyze all types of path accesses in Path ORAM and to reduce both

the intensity of each access and the overall number of path accesses. This is achieved by

introducing a set of three techniques:

• IR-Alloc, which reduces the number of data blocks accessed for each path by introducing

a utilization-aware node size allocation strategy.

• IR-Stash, which reduces the number of PosMap accesses by introducing a dual stash

design that mitigates PosMap accesses for data blocks present in the treetop cache.

• IR-DWB, which reduces the number of dummy path accesses by converting them into

useful write-back operations of dirty entries in the last level cache (LLC).

This dissertation presents these intensity reduction techniques under the title IR-ORAM.

Space. The focus is on Ring ORAM optimization to address its significant space over-

head, nearly five times that of user data. The main cause of Ring ORAM’s space inefficiency

is the presence of reserved dummy blocks (S blocks per bucket). Despite this, these blocks

8



offer a bandwidth/performance benefit. Extra dummy space enables Ring ORAM to toler-

ate more online accesses before requiring offline actions, such as reshuffling and refreshing

invalidated blocks (also known as dead blocks).

The space demand issue is addressed with two schemes in this dissertation: 1) Analysis of

the source of space inefficiency in Ring ORAM and proposing techniques to overcome those

inefficiencies; 2) Proposing an NVM-friendly Ring ORAM implementation on DRAM/NVM

hybrid memory to achieve further DRAM space saving.

In the first scheme, the progression of dead blocks over time and the correlation of

the S parameter with performance over the ORAM tree levels were studied. The outcome

of these analyses led to the identification of two inefficient uses of memory space in Ring

ORAM: (i) accessed blocks holding useless data until the next reshuffle operation; and (ii)

large buckets providing a diminishing performance benefit for tree levels close to the leaves.

Two techniques were then proposed to exploit the optimization opportunities, respectively.

Specifically, accessed blocks are reclaimed early by allocating them to buckets that need

a reshuffle, and the bucket size for tree levels close to the leaves is shrunk for a better

space/performance trade-off. These techniques are presented under the title AB-ORAM.

In the second scheme, two key observations were made: (i) for a tree-based Ring ORAM

memory organization, saving bottom levels in NVM can dramatically reduce the DRAM

memory requirement; (ii) the trade-offs among Ring ORAM operations expose design op-

portunities without security compromise. Therefore, the scheme involves saving the bottom

levels of the ORAM tree in NVM and shortening the path of the EvictPath operation, which

not only mitigates the number of NVM writes but also speeds up execution.

Figure 5 illustrates the trade-off between space efficiency and performance, showing how

improvements in one aspect tend to degrade the other among existing ORAM implemen-

tations (i.e., Path ORAM and Ring ORAM). Space efficiency is defined as the inverse of

the amount of DRAM space required per user data, while performance is defined as the in-

verse of execution time. Ring ORAM demonstrates the highest performance, but low space

efficiency compared to Path ORAM. The figure also positions works from this dissertation

within this space. IR-ORAM matches Path ORAM’s space efficiency while improving per-

formance. AB-ORAM closely aligns with Path and Ring ORAM in both space efficiency

9



and performance, while EP-ORAM has slightly lower performance than Ring ORAM for

better space efficiency, even surpassing Path ORAM. The works presented in this disser-

tation aim to bridge the gap between achieving the best performance and the most space

efficient ORAM implementations.
Pe

rf
o

rm
an

ce

Space Efficiency

Ring ORAM
AB-ORAM

IR-ORAM

Path ORAM

EP-ORAM

Figure 5: Overview of performance and space efficiency improvements.

The rest of the dissertation is organized as follows. Chapter 2 provides the background

of ORAM and details various implementations, specifically discussing the basics of Path

ORAM and Ring ORAM operations.

Chapter 3 introduces IR-ORAM. It discusses various path access types in Path ORAM

and analyzes the memory intensity of each type. Following this analysis, a set of three

techniques is described to address the intensity of each path type.

Chapter 4 introduces AB-ORAM. The chapter delves into analytical experiments uncov-

ering space waste in Ring ORAM, which is followed by a discussion on how to utilize these

observations to mitigate space demand in Ring ORAM.

Chapter 5 introduces EP-ORAM. The chapter discusses how a DRAM/NVM hybrid

memory design can be exploited to save DRAM space while adopting the ORAM protocol.

Chapter 6 concludes the dissertation by summarizing the contributions and providing

direction for future work.

10



2.0 Background

2.1 Memory Security

2.1.1 Memory Basics

Main memory is a key component in modern computing systems. It is part of the memory

hierarchy working with the CPU (Central Processing Unit). The memory hierarchy is the

organization of different types of memory based on their speed, cost, and capacity. The goal

is to provide the CPU with fast access to the data while balancing cost efficiency and physical

space constraints. The higher levels are faster, smaller in capacity, and more expensive, while

the lower levels are slower, larger, and cheaper. The memory hierarchy typically consists of

the following levels:

• Registers. At the top of this hierarchy, there are CPU registers located inside the CPU.

They are small storage units that contain the data the CPU is currently processing.

Modern processors typically have 32 to 64 registers [33]. Registers are the highest-speed

memory units in the hierarchy.

• Cache. In the middle of the hierarchy, positioned between the CPU and main memory,

lies the cache. Cache memory significantly speeds up data access for the CPU by stor-

ing frequently accessed data and instructions. It operates on the principle of temporal

locality, where recently accessed data is likely to be accessed again in the near future.

Caches are organized into multiple levels—L1, L2, and L3—where L1 is the closest to

the CPU and offers the fastest access times but has the smallest capacity. L2 and L3

caches provide progressively larger storage capacities and slower access times, but are

still significantly faster than accessing the main memory. Cache sizes range from tens of

kilobytes to a few megabytes for the last level cache [33].

• Main memory. Located further down the hierarchy, main memory acts as a larger pool

of data storage that the CPU can access directly. It has a significantly larger capacity

than the previous levels, with capacities up to tens of gigabytes [33]. Main memory holds

11



the operating system, applications, and files that are in active use.

The hierarchy of volatile data ends at the main memory; beyond the main memory, we

have disk storage such as Hard Disk Drives (HDDs) and Solid-State Drives (SSDs). Unlike

main memory, these devices retain the data even when the power is turned off. In the

subsequent discussion, main memory technology is examined in greater detail owing to its

significance within this dissertation.

DRAM is the most commonly used technology as the main memory in modern computing

systems. At the top level, it is a printed circuit board (PCB) that has several chips attached

to it. The chips work in lockstep and each provides a portion of data to be accessed.

DRAM has a hierarchical organization; at the highest level, it has one or more channels,

on each channel one or more DIMMs exist. Each DIMM is comprised of two ranks. Each

rank has several chips (8, 16, etc.) that work in lockstep and each provides a portion of data

to be accessed.

Each chip in DRAM also has a hierarchy of memory arrays. Each memory array can

be thought of as a grid of rows and columns. Each chip has several independent banks of

memory arrays. Memory arrays inside the banks are referred to as subarrays. A subarray

refers to a group of rows in the memory. At the intersection of each row and column, there

exists a DRAM cell. Each cell exactly represents one bit of data.

DRAM stands for dynamic random-access memory. Each DRAM cell is a single pair of

transistor-capacitor. It is called random access because any location can be accessed directly

via an address without needing to touch the preceding locations. It is dynamic because the

capacitor storing the charge is not perfect and it can lose charge over time, hence it has to

be refreshed periodically [37].

2.1.2 Security and Privacy

In this section, the foundation of secure processing is discussed, with an illustration of

how access pattern protection fits into the picture.

Outsourcing computation and data has become more prevalent than ever today. With

outsourcing arises the concern for user privacy and security. Cloud servers need to address

12



the security and privacy implications of outsourcing for their users. That is why secure

processors like Intel’s Software Guard Extensions (SGX) have emerged. Intel SGX is a set

of instructions that are built into some Intel processors in order to provide users with a

trusted execution environment. The main goal is to provide a mechanism to execute the

critical parts of a program in a secure environment so that it is protected from the rest of

the system, including the operating system and any other application with root privilege.

This isolation is meant to protect the code from disclosure and tampering.

Intel SGX ensures secure processing by utilizing enclaves, which are protected areas of

memory for code execution, and employing attestation to verify authenticity. It further

enhances data security through sealing, encrypting data with keys specific to the enclave

for secure storage, thereby ensuring that only authorized enclaves can access it. However,

it cannot guard against access pattern attacks; although the data is encrypted, the pattern

in which the data is accessed may reveal information about the data itself or the executing

program.

Commodity DRAM employs a direct-attached memory architecture, where addresses

are communicated in plaintext on the memory bus. This setup allows for a straightforward

scheme of address mapping, resolving physical addresses into DRAM indices such as channel

ID, rank ID, bank ID, row ID, and column ID. However, this transparency means that

anyone snooping the memory bus can learn which memory locations the processor accesses,

potentially leaking information about user programs to external attackers. Recent research

has highlighted a solution to this vulnerability: the use of a cryptographic primitive known

as Oblivious RAM (ORAM). ORAM protects the address access pattern by obfuscating it,

reshuffling, and re-encrypting the data blocks after each memory access, thus safeguarding

against such leaks.

13



2.2 ORAM Basics

2.2.1 ORAM History

This section describes the origins of ORAM (Oblivious RAM) and its evolution over time.

The concept of ORAM was first formulated by Goldreich in 1987 [25], with the goal of pro-

tecting against software IP theft. Although cryptographic techniques can secure the contents

of memory, they do not conceal the access patterns of program execution. A naive solution

for obfuscating the program’s control flow involves scanning the entire memory for each

access, which is highly inefficient in terms of both performance and bandwidth. Goldreich

proposed the Square Root ORAM to achieve better performance. In this design, to protect

N data blocks,
√
N dummy blocks are stored alongside the real data blocks in the memory,

with all blocks encrypted and permuted. To further improve the bandwidth efficiency of

Square Root ORAM, Goldreich and Ostrovsky introduced the hierarchical ORAM in 1996

[26]. This approach organizes server storage into a pyramid of permuted arrays that grow

exponentially in size, reducing the amortized bandwidth cost to O(log3N). A significant

advancement came in 2011 when Shi et al. proposed the first tree-based ORAM protocol

[64], marking a turning point in ORAM’s evolution. The most notable among tree-based

ORAM protocols is Path ORAM, which reduces the ORAM overhead to O(logN), estab-

lished in 2013. Since its publication, Path ORAM has set a benchmark for protecting access

patterns in secure processor configurations. Section 2.3 will provide a detailed discussion on

this protocol.

2.2.2 Related Work

By adopting secure memory architectures, memory access patterns on the buses can

be effectively protected with hardware enhancements [2, 4]. In addition to defending user

privacy, hardware-assisted security enhancements are developed to mitigate the performance

impact of data authentication [70].

Path ORAM was also enhanced for its adoption for cloud services. Recent studies

have proposed to adopt ORAM for protecting data storage servers [63, 44]. Stefanov et

14



al. proposed ObliviStore, a high-performance, distributed ORAM-based cloud data store

[65]. Chakraborti et al. introduced rORAM to minimize the number of random physi-

cal disk seeks when accessing ranges of sequentially logical blocks in an untrusted storage

[9]. ConcurORAM was proposed to improve overall throughput with a parallel, multi-client

oblivious ORAM [10]. Williams et al. introduced PrivateFS that is an oblivious file sys-

tem based on a parallel ORAM [75]. Radix Path [3] was proposed on top of Path ORAM

to reduce the space demand. In this scheme, the root node is expanded to a 1000-entry

node to buffer nodes of other levels and all other buckets are reduced in size. It requires a

very expensive background eviction to avoid path overflow. Sahin et al. proposed TaoStore,

an oblivious data storage that processes client requests concurrently and asynchronously

in a non-blocking fashion [61]. Hoang et al. developed a distributed ORAM scheme [34] to

achieve client storage efficiency in addition to efficient client-server bandwidth. Maiyya et al.

propoesed QuORAM [47] that presents a Quorum-Replicated Fault-Tolerant ORAM Data-

store, enhancing reliability in oblivious RAM systems. By employing quorum replication, it

ensures fault tolerance and maintains data integrity even in the presence of node failures.

Fletcher et al. proposed Freecursive to store a unified ORAM tree that combines both the

position map and the data so that ORAM accesses are not distinguishable [21]. To achieve

the highest level of security, Fletcher et al. proposed to defend timing channel attacks by

issuing path accesses at fixed rate and pattern where dummy accesses are issued if no real

user request awaits [22]. Nagarajan et al. proposed to construct an extra smaller ORAM tree

to reduce the average length of Path ORAM access [49]. demand of Ring ORAM [7]. Their

spatial scheme is the bucket compaction. Yu et al. proposed PrORAM to improve Path

ORAM performance by constructing superblocks for prefetching [81]. Zhang et al. proposed

to eliminate accessing overlapped portion of consecutive paths [83]. Wang et al. proposed

to mitigate the interference of Path ORAM on co-running processes on the same server [72].

Cao et al. proposed String ORAM to reduce Ring ORAM overhead via spatial and temporal

optimization schemes to reduce execution time and space The temporal scheme introduces

a more efficient scheduling approach for handling memory commands to accelerate Ring

ORAM. Maas et al. proposed constructing a treetop cache to reduce the number of memory

accesses and hence improve overall performance. Treetop caching is effective because the

15



binary tree grows exponentially, as a result, many levels can be cached in a very small on-

chip space[46]. Zhang et al. proposed to save duplicate copies in the dummy blocks to

receive the data block early [82]. Wang et al. proposed to adopt Path ORAM for emerging

BOB (buffer-on-board) memory architecture [73]. Che et al. proposed a channel imbalance-

aware scheduler [12] to minimize the channel imbalance for read requests in Ring ORAM.

Devadas et al. proposed Onion ORAM [18] to construct a constant bandwidth blowup

scheme. It leverages poly-logarithmic server computation to avoid the logarithmic lower

bound on ORAM bandwidth blowup. Chen et al. implemented Onion Ring ORAM [14] to

outperform logarithmic-bandwidth ORAM such as Ring ORAM. Liu et al. proposed PS-

ORAM [43] to offer efficient crash consistency for ORAM protocols adopted in NVM. Rajat et

al. proposed PageORAM [52] that is a DRAM page-aware ORAM strategy that optimizes

access patterns for increased security and reduced overhead, leveraging the granularity of

DRAM page accesses to enhance system performance.

2.2.3 Threat Model

This dissertation adopts the same threat model as other existing ORAM studies [66, 21,

59, 72, 49, 82, 81]. The focus is on preventing information leakage from the memory access

traces of applications running on not-fully-trustworthy cloud servers. In such environments,

the only trusted component (i.e., trusted computing base (TCB)) is the processor, i.e., while

the processor can faithfully execute the user application, all other components, including the

OS, the memory modules, and the memory buses, are not trustworthy. Figure 6 depicts the

threat model adopted in this dissertation. To ensure high level data security, we need to

protect data secrecy, data integrity, and data privacy for the secure applications running on

the servers.

Data secrecy and data integrity are assumed to be protected with hardware-assisted

security enhancements. [71, 35, 68, 24, 79]. As an example, the recently released Intel

SGX architecture saves encrypted user code and data in memory. They are decrypted when

being brought into the processor [35]. A Merkle tree is built on the user data to prevent

unauthorized changes [24]. Existing studies showed that the performance impacts of these

16



enhancements are effectively mitigated with the trustworthy crypto hardware integrated in

the processor.

Off-chip

User

Memory Bus

Cloud

Plaintext Address 

On-chip

Trusted Execution Environment 
(e.g. Intel SGX)

Trusted Untrusted

Data

Adversary

Snoop

Figure 6: The threat model adopted in the dissertation.

This dissertation assumes the attackers have the physical access to the servers so that

they can trace and analyze all the memory accesses. The servers adopt the direct-attached

memory architecture [37] such that, while the data on data buses are transmitted in cipher-

text, the data on address buses and command buses are in cleartext. To protect the memory

access patterns, the baseline adopts the traditional Path ORAM implementation [66] and

its recent enhancements, as elaborated in the following sections.

2.3 Path ORAM

2.3.1 Operation Basics

Path ORAM is a crypto primitive that protects memory access patterns through obfus-

cating memory accesses to untrusted external memory [66]. As shown in Figure 7, Path

17



ORAM organizes the untrusted memory space as a binary tree, referred to as ORAM tree.

An on-chip ORAM controller converts each user memory request to a path access to the

ORAM tree.

The ORAM tree has L levels ranging from 0 (the root) to L-1 (the leaves). Each tree

node, referred to as a bucket, has Z slots to save data blocks, e.g., cache lines In this

dissertation. The slots store either real data blocks or dummy blocks. Given all blocks are

encrypted, the block types are indistinguishable.

The on-chip ORAM controller consists of control logic, stash, PosMap (position map

table) and PLB (PosMap lookaside buffer). The PosMap is a lookup table that maps a

block address BlkAddr in user address space to a unique path ID in the tree. The stash is a

small fully associative on-chip buffer that temporarily keeps a number of data blocks (e.g.,

100 − 200 blocks) and their path IDs. Given PosMap could be big for a large user space,

we may need multiple levels of PosMap and store these mapping entries in memory. We use

PLB, a small on-chip buffer, to cache the frequently used PosMap entries such that we can

reduce the number of ORAM accesses for PosMap entries.

ORAM operations. Path ORAM converts a memory request with BlkAddr=a to one or

more path accesses to the ORAM tree. Each path access consist of the following phases.

1. Stash, PosMap, and PLB access phase. Before accessing the ORAM tree, the ORAM

controller searches the block in the stash and, simultaneously, translates a to a path ID

l using PLB/PosMap. The block is returned to the user application if it is found in the

stash. Otherwise, the ORAM controller starts the read path phase if the corresponding

a-to-l mapping is found in PLB, or fetches the mapping from memory.

2. Path read phase. Given a path ID l, the ORAM controller reads all the blocks on l from

the memory. It decrypts and authenticates the fetched blocks, and discards the dummy

blocks and inserts the real blocks to the stash. This phase generates L×Z memory read

accesses.

3. Block remap phase. After reading the path, the ORAM controller remaps block a to a

random new path l′. It then updates the PosMap and the stash with the new map.

4. Path write phase. After returning the requested block to the user application, the ORAM

controller writes data blocks except a back to path l. It searches the blocks in the

18



Leaf 3Leaf 2Leaf 0 Leaf 1

Level 0

Level 1

Level 2

ORAM Tree (memory side)

ORAM Controller (CPU side)

Stash On-chip PosMap

PLB

Write path3

Read path

Remap Block2

1

Figure 7: An overview of Path ORAM (L = 3, Z = 4).

stash and pushes the data blocks as low as possible in the ORAM tree. Dummy blocks

are patched if not enough data blocks can be found. All blocks are encrypted and

authenticated before being written to the memory. This phase generates L×Z memory

write accesses.

Path ORAM may easily deplete the peak off-chip memory bandwidth [59], resulting in

large performance degradation not only to itself but also to co-running applications [72].

In summary, the memory bandwidth consumption of Path ORAM has become the main

obstacle that prevents its wide integration in modern computer systems.

2.3.2 Key Enhancements

Many schemes have been proposed to improve the performance of Path ORAM. Next,

several closely related enhancements are discussed.

PosMap is sensitive metadata and thus requires secure protection. Path ORAM may

19



recursively create a new ORAM tree for the PosMap and then a new level of PosMap.

The last level of PosMap is saved in an on-chip buffer. For better access obliviousness and

performance, Fletcher et al. proposed Freecursive to merge all these ORAM trees such that

PosMap and data accesses are non-distinguishable [21]. In this dissertation, Freecursive is

adopted in the baseline. Three levels of PosMap are constructed — PosMap1 and PosMap2

are merged in the main ORAM tree while PosMap3 is saved completely in an on-chip buffer.

Given the number of accessed memory blocks for each path is linear to the path length,

Maas et al. proposed to buffer a few top levels on-chip [46]. They chose to save the tree top in

the stash — they saved up to three levels without incurring considerable stash management

overhead. Later studies [72, 49] proposed to buffer ten or more levels, which effectively

reduces the memory bandwidth demand. Given the stash is fully associative, maintaining

a huge stash with all tree top blocks becomes expensive. The tree top can be kept in a

standalone buffer that maintains the tree structure [49].

To achieve high security, Fletcher et al. proposed to defend timing channel attacks by

issuing path accesses at fixed rate and pattern [22]. A dummy access is inserted if there is no

real user request pending. When a Path ORAM implementation has different types of path

accesses, it becomes more complicated. For example, Nagarajan et al. proposed to construct

an extra smaller ORAM tree so that there exists two path lengths [49]. To prevent potential

timing channels, they issue path accesses using a fixed pattern, e.g., one main tree access

after every four path accesses to the smaller tree. Dummy path accesses of either type are

inserted as needed.

Next, the introduction of Ring ORAM optimization will be presented. This optimization

slightly alters the Path ORAM protocol to reduce its bandwidth and performance overhead

by allocating additional space to the ORAM tree. The following section will detail how it

works.

2.3.3 Ring ORAM Optimization

Ring ORAM [58] was developed on top of Path ORAM [66]. It achieves performance

improvement by reducing the memory bandwidth requirement for online accesses to 1
Z′ of

20



that in Path ORAM. An online access is referred to as the operation that services the memory

request of the user program.

Ring ORAM also organizes the to-be-protected memory as a binary tree. Assume we

construct an ORAM tree with L levels and each bucket has Z slots. Then, the ORAM tree

can hold Z × (2L − 1) blocks. Ring ORAM reserves S slots in each bucket, (or S × (2L − 1)

for the entire tree), for holding dummy blocks only. The remaining Z ′ slots in each bucket

may hold either real data blocks or dummy blocks (Z=Z ′+S). Ring ORAM uses around

half of Z ′ space for real data blocks to facilitate random path remapping, similar as that in

Path ORAM. Figure 8 depicts Ring ORAM tree organization.

Z’ = 3

S = 4

Z = 7

reserved dummy block

real or dummy block

ORAM Tree

metadata

Figure 8: Ring ORAM tree organization (L = 3, Z ′ = 3, S = 4, and Z = 7).

Like Path ORAM, Ring ORAM maintains a position map that maps each data block

to a path ID. It also includes a stash to buffer data blocks loaded from the memory, and

optionally a treetop cache for performance improvement [57, 46]. The path access in Path

ORAM, is responsible for servicing the user request, maintaining the tree, and depleting the

stash. Ring ORAM, on the other hand, differentiates between online and offline accesses.

The former is to service the user program request while the latter refers to maintenance

operations. Ring ORAM supports three main operations as follows.

• ReadPath: this operation is referred to as online access, i.e. to service the user program

request. To access block A, the ORAM controller first determines its mapped path l and

then conducts a two-step access.

(1) metadata access: The ORAM controller loads the metadata from a separate small

21



tree for all buckets along l. It then identifies the location of block A, i.e., a particular

slot in one bucket, and then determines one valid dummy block from each of the other

buckets along l. Metadata is updated/written back at the end of the Ring ORAM access.

(2) block access: The ORAM controller reads one block from each bucket along the

path. The block A is added to the stash while all other blocks are dummy blocks and

thus discarded. The bucket location of each block is invalidated and the information gets

updated in the metadata.

ReadPath differs from path accesses in Path ORAM in that it only reads one block per

bucket, thereby reducing the memory bandwidth requirement compared to Path ORAM.

• EvictPath: it is a background operation that gets triggered after every A online accesses.

Each trigger chooses a path using reverse-lexicographic order to reshuffle. It i) reads all

remaining valid blocks from the buckets along the selected path, ii) refills the buckets with

loaded blocks as well as those in the stash, and iii) writes the new contents to the buckets

in memory. The data are encrypted and authenticated and, as part of the operation, the

metadata are also updated. The role of this operation is to lower the stash occupancy

and push the data blocks to levels close to tree leaves. It is similar to path access in Path

ORAM but requires no specific block to access.

• EarlyReshuffle: it gets triggered after a readPath operation, for a particular bucket

if it accumulates S readPath operations after the last bucket write. To complete the

operation, the ORAM controller reads the corresponding bucket into the stash, reshuffles

and writes it back to the tree. Each bucket reshuffle includes Z ′ reads (from valid slots)

and Z writes (to all slots). Note that a residue block in the stash might be piggy-backed

during a bucket reshuffle.

Since each bucket contains at most Z ′ real data blocks, EarlyReshuffle and EvictPath

read Z ′ blocks but write Z blocks. Both operations update the metadata block accordingly.

BackgroundEvict. If the stash is full, Ring ORAM invokes BackgroundEvict to prevent

the protocol from failing. This is achieved by issuing dummy ReadPath that reads a valid

dummy block per bucket from a randomly selected path. BackgroundEvict ensures the stash

occupancy does not increase until the next EvictPath arrives. BackgroundEvict keeps issuing

dummy ReadPath operations until sufficient EvictPath operations are executed to reduce

22



the stash occupancy below the threshold. BackgroundEvict operation converts protocol

correctness problem to a performance problem [7, 66].

ORAM Controller

ORAM Tree

Trusted

Untrusted

Stash

path l

ReadPath EvictPath

Position Map
A  è path l

A

EarlyReshuffle

Figure 9: Ring ORAM tree organization and operations with L = 3.

Figure 9 depicts an example of a Ring ORAM tree with three levels. The figure illustrates

how each Ring ORAM operation affects buckets at each level. In the EvictPath operation,

all the buckets along the path are affected. In the EarlyReshuffle operation, only a bucket

with a counter higher than the threshold is affected. In the ReadPath operation, exactly one

block per level is read into the stash, including the block of interest, as shown in the figure,

block A.

Note that readPath is considered online access, and services the user program request.

Whereas, evictPath, and earlyReshuffle are offline accesses and responsible for maintaining

the tree and depleting the stash.

23



3.0 IR-ORAM: Path Access Type Based Memory Intensity Reduction for

Path-ORAM

3.1 Intensity Reduction Overview

We identify the memory intensity in Path ORAM in terms of its different path types. we

study all path types closely and identify the source of inefficiency in them. we then develop

three different schemes to reduce the intensity of each.

Path ORAM [66] is a popular ORAM implementation that organizes the user data to

be protected in a tree structure and converts each user memory request to one or multiple

tree path accesses. While Path ORAM reduces the memory access overhead from O(N) in

traditional ORAM [25, 26] to O(logN) (where N is the number of data blocks of the protected

memory space), it remains a highly memory intensive primitive that consists of path accesses

of three types.

• PTp path. To determine the tree path to access, Path ORAM uses multiple levels of

position map, a.k.a., PosMap, tables to map user addresses to path IDs. While an on-

chip buffer can cache frequently used entries, Path ORAM still needs to generate many

PosMap accesses.

• PTd path. To access a requested data block after knowing its path ID, Path ORAM

accesses all tree nodes on the path from the leaf node to the tree root. All data blocks

in these nodes are accessed to ensure secure protection.

• PTm path. To prevent timing channel attacks, Path ORAM needs to generate path

accesses at a fixed rate, e.g., one path access per T cycles [22, 20]. When it needs to

generate a path access but there is no pending real request, Path ORAM constructs a

dummy one to access a random tree path.

Since the high memory intensity has become the main obstacle that prevents Path ORAM

from wide deployment, many schemes have been proposed to mitigate memory bandwidth

usage and its impact. Maas et al. proposed to cache top tree levels on-chip to reduce the

24



number of data blocks to access [46]. Nagarajan et al. proposed to create a smaller tree such

that majority accesses can be satisfied by the smaller tree, which reduces the length of the

tree and the number of blocks per node [49]. Zhang et al. proposed to exploit the dummy

blocks of the same path to save shadow copies so that the processor can resume execution

early [82]. Unfortunately, the memory intensity of Path ORAM remains high, which still

incurs large performance degradation to the user applications.

We propose IR-ORAM that proactively reduces the memory access intensity of each

path type. IR-ORAM consists of a set of three path-type-dependent schemes with

a focus on intensity reduction, i.e., it reduces the number of each type of path

accesses to improve the overall performance. Our contributions are as follows.

• We propose IR-Alloc, a utilization-aware node size allocation strategy, to reduce the

number of data blocks to access for each path, i.e., the intensity of all types of paths. IR-

Alloc exploits the observation that tree nodes at different levels exhibit significant space

utilization difference. Here, the space utilization is defined as the portion of memory

blocks that saves real data blocks (rather than dummy blocks).

In particular, the middle level nodes show low utilization such that we can reduce the

number of blocks allocated to these tree nodes, which effectively reduces the number of

data blocks in each path while incurring minimized impacts on memory space and ORAM

operation.

• We propose IR-Stash to reduce the number of PosMap accesses, i.e., the intensity of PTp

paths. Our utilization study reveals that the tree top mostly serves as an overflow buffer

of the on-chip stash. However, existing schemes on buffering the tree top on-chip lead

to either large space overhead or unnecessary PosMap accesses. We therefore develop

IR-Stash that places top tree levels in a set-associative sub-stash and maintains its tree

structure using a small table. IR-Stash helps to eliminate unnecessary PosMap accesses

at low overhead.

• We propose IR-DWB to reduce the number of dummy path accesses, i.e., the intensity of

PTm paths. IR-DWB converts dummy paths to write-back operations of dirty LRU (least-

recently-used) entries in the LLC (last level cache), which minimizes LLC replacement

25



overhead while introducing no memory contention as that in traditional eager writeback

cache designs.

• We evaluate the proposed techniques and study their effectiveness in memory intensity

reduction. Our experimental results show that IR-ORAM achieves on average 42% per-

formance improvement over the state-of-the-art while effectively enforcing the original

memory access obliviousness and thus the same level of security protection.

3.2 Motivation

Since Path ORAM suffers mainly from frequent path accesses, we study the path types

and the tree access patterns to reveal the opportunities for improvements.

3.2.1 The Types of Path Accesses

The preceding discussion reveals that there are three types of path accesses — PosMap

paths, data paths, and dummy paths. They are referred to as PTp, PTd , and PTm paths,

respectively. To understand their importance, we conduct an experiment to evaluate the

frequencies and summarize the results in Figure 10. The experiment settings are in Sec-

tion 3.4. Here, PTp(Pos1) indicates the memory accesses for fetching PosMap1 entries, i.e.,

the mapping from the requested data’s block addresses to their ORAM path IDs. PTp(Pos2)

indicates the memory accesses for fetching PosMap2 entries, i.e., the mapping from PosMap1

entry’s block addresses to their corresponding path IDs. Note that the entire PosMap3 is

saved on-chip. PTd indicates the memory accesses for fetching the paths that contain the

requested data blocks. PTm indicates the dummy paths that are inserted due to lacking real

requests because we need to defend timing channel attacks.

From the figure, (1) while PTd accounts for 56% of the total memory accesses, PTp is

non-negligible — they are around 33% of the total. Of these accesses, PTp(Pos1) is around

4× of PTp(Pos2), indicating there are many more PosMap1 misses than PosMap2 misses to

PLB. (2) PTm accounts for a large portion as well. In this experiment, we set the inter-path

26



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

e
rc

e
n

ta
ge

 o
f 

A
cc

e
ss

e
s

PT_p (Pos2) PT_p (Pos1) PT_d PT_mPTp (Pos2) PTp (Pos1) PTd PTm

Figure 10: The distribution of different path accesses.

time interval T to be the same (T=1000 cycles) for all benchmarks. Setting the same T

value achieves the highest security protection across different benchmark programs.

Alternatively, previous studies have shown that it might be possible to set the T value

according to the memory intensity of the application. By setting a larger T value, fewer

dummy paths may be inserted but real requests may have to wait longer before being ser-

viced, which becomes problematic for bursty memory requests. In addition, an attacker

may observe the T value to guess the memory intensity, introducing a potential information

leakage channel, e.g., a covert channel.

Note, even though Path ORAM has three path types, its memory access obliviousness

is securely enforced, i.e., an attacker cannot determine the type of a particular path access

outside of the TCB — the PATH ORAM controller keeps issuing path accesses at one per T

cycles. This principle is important for analyzing the memory access obliviousness.

To summarize, we conclude that Path ORAM contains three types of path accesses. To

effectively reduce its memory bandwidth demand, we may develop schemes to address the

27



memory intensity of every type.

3.2.2 The Utilization of Tree Nodes

To prevent stash full and protocol failure, Path ORAM keeps sufficient dummy entries

in the ORAM tree — a typical implementation uses around 50% of the protected space to

hold real data [59], i.e., we store around 4GB user data in a 8GB ORAM tree, with all the

rest being dummy data blocks.

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0  0 B  0 . 1 B  0 . 2 B  0 . 3 B  0 . 4 B  0 . 5 B  0 . 6 B

 0 . 7 B  0 . 8 B  0 . 9 B  1 B  1 . 1 B  1 . 2 B  1 . 3 B
 1 . 4 B  1 . 5 B  1 . 6 B  1 . 7 B  1 . 8 B  1 . 9 B  2 B

 2 . 1 B  2 . 2 B  2 . 3 B  2 . 4 B  2 . 5 B  2 . 6 B  2 . . 7 B
 2 . 8 B  2 . 9 B  3 B  3 . 1 B  3 . 2 B  3 . 3 B  3 . 4 B

 3 . 5 B  3 . 6 B  3 . 7 B  3 . 8 B  3 . 9 B  4 B   o v e r a l l  a v g

Ut
iliz

ati
on

 Ra
te

L e v e l

Figure 11: The space utilization at different tree levels.

Given an ORAM tree consists of both (real) data blocks and dummy blocks, it is worthy

to study the distribution of dummy blocks in the tree. Figure 11 summarizes the results

from an experiment for comparing the node space utilization (y-axis) at different levels (x-

axis). We take snapshots at different execution times to illustrate the trend. Here, the space

utilization at a level is defined as the ratio of all useful data blocks to the total allocated

28



memory slots at that level. In this experiment, we protect a 8GB memory space with 4GB

user data. We have Z=4, L=25. The block size is 64B.

To initialize the ORAM tree, we clear the tree and access all data blocks once in a random

order. For each block, we follow the Path ORAM baseline to remap and write the block

to the tree. We create three levels of PosMap mapping tables accordingly. While there are

64 million data blocks in the ORAM tree, we run the memory trace for four billion path

accesses, which is sufficiently long to show the normal access behavior, as shown in [66, 59].

Due to its excessive length, we use a mix of path accesses from the benchmarks (trace range

[0B-3.7B]) and the randomly generated memory accesses (trace range (3.7B, 4B]). In the

figure, “XB” indicates the snapshot after executing X billion path accesses, i.e., “0B” is

the snapshot right after the initialization. Note that the average line indicates the overall

average and not the average of taken snapshots.

Figure 11 presents the snapshots at different execution points for the typical setting (as

shown in the experiment section). While a similar study was reported in [66], they focused

on choosing different bucket sizes. Instead, we make the following observations that are new

in the literature.

• The top levels (level 0 to around level 9) exhibit large utilization fluctuations. For exam-

ple, at level 3, the utilization ranges from 11% to 50% and there is no clear stable range

for the long execution at each level and across different levels. In general, the fluctuation

tends to be more severe for the level that is closer to the tree root.

• The middle levels (level 10 to around level 21) exhibit two utilization ranges for different

access patterns. For benchmark accesses that have patterns and data reuse (i.e., program

memory traces), the utilization fluctuates at 20% and lower. For random accesses (i.e.,

synthesized memory traces), the utilization tends to be at around 30%. The utilization

towards the end of the execution is around 30% because we place random traces at the

end of the trace mix.

• The bottom levels (level 22 to 24) exhibit larger utilization than those of middle levels.

In particular, the utilization of the last level tends to be around 70% for random accesses

and 80% for patterned accesses. The utilization tends to grow towards that of the last

level as they approach the last level.

29



When we fetch a tree path, each node contributes four data blocks indicating even

memory bandwidth consumption across different levels. However, according to Figure 11,

we tend to get more dummy blocks from middle levels due to their low space utilization.

In addition, a binary tree has significant capacity imbalance — the space of level l roughly

equals to the space of all levels from 0 to l-1. While fetching top and middle levels consumes

more memory bandwidth (e.g., 21 out of 25 levels), its space accounts for a small portion,

e.g., top 21 levels occupy only 6% of the total space.

Figure 12 compares the utilization of three different workloads (using the same settings

and figure parameters in Figure 11). The results indicate that the utilization trend remains

the same for individual workloads.

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ut
iliz

ati
on

 Ra
te

L e v e l

 0 m   2 0 m   4 0 m   6 0 m   8 0 m  
 1 0 0 m   1 2 0 m   1 4 0 m   1 6 0 m   1 8 0 m  
 2 0 0 m   2 2 0 m  2 4 0 m   2 6 0 m   2 8 0 m
 3 0 0 m   3 2 0 m   3 4 0 m   3 6 0 m   3 8 0 m  

              4 0 0 m   o v e r a l l  a v g

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ut
iliz

ati
on

 Ra
te

L e v e l

 0 m   2 0 m   4 0 m   6 0 m   8 0 m  
 1 0 0 m   1 2 0 m   1 4 0 m   1 6 0 m   1 8 0 m  
 2 0 0 m   2 2 0 m  2 4 0 m   2 6 0 m   2 8 0 m
 3 0 0 m   3 2 0 m   3 4 0 m   3 6 0 m   3 8 0 m  

     4 0 0 m   o v e r a l l  a v g

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ut
iliz

ati
on

 Ra
te

L e v e l

 0 m   2 0 m   4 0 m   6 0 m   8 0 m  
 1 0 0 m   1 2 0 m   1 4 0 m   1 6 0 m   1 8 0 m  
 2 0 0 m   2 2 0 m  2 4 0 m   2 6 0 m   2 8 0 m
 3 0 0 m   3 2 0 m   3 4 0 m   3 6 0 m   3 8 0 m  

              4 0 0 m   o v e r a l l  a v g

Figure 12: The space utilization behavior per benchmark; gcc (left), lbm (middle), and a

random trace (right).

In summary, there exists a significant mismatch of node space utilization, memory band-

width, and space capacity across different tree levels.

3.2.3 The Block Migration Behavior

To understand the reason why an ORAM tree exhibits distinct utilization difference

across different tree levels, we further study how a data block migrates in an ORAM tree.

Each path access in Path ORAM has two memory phases — a read phase and a write

phase. Once the path ID is determined, in the read phase, we fetch all data blocks along the

path and place real blocks in the stash; in the write phase, we search the whole stash, i.e.,

the blocks from the path and the blocks that were already in the stash, and determine the

30



most appropriate block to be written to the bucket at each. We fill in the buckets from the

leaf node to the root.

a level k1

a

Stash

l m

level 0

ORAM tree

a level k1

a

Stash

q m

level 0

ORAM tree

a level k2

(a) Move a to a top level 

in the ORAM tree

(b) Move a deeper

 in the ORAM tree

Figure 13: The migration behavior after block a leaves the stash.

In Path ORAM, each path access has two memory phases — a read phase and a write

phase. During the write phase, we choose data blocks from the read phase, pre-existing data

blocks in stash, and/or dummy blocks and place them in the path. A pre-existing block is

a block that was in the stash before the read path phase. The observation is, if we pick up

a pre-existing data block, we tend to place it to a top level. For example, in Figure 13(a), a

is a pre-existing block. Assume we read path l and write blocks back to l, and we pick up a

(mapped to path m) from the stash and write it to level k1. We observe that k1 tends to be

a small value, i.e., k1 is close to the root. This is because (1) any two paths overlap (because

the root belongs to all paths); and (2) two random paths tend to have small path overlap.

The latter is true because two paths overlap, e.g., at level 15, only if they belong to the

same subtree at level 15. However, there are 32K different subtrees at this level, making the

overlap possibility very low. In contrast, there are only 8 subtrees at level 3, it has higher

possibility for two paths to overlap at level 3. Of course, due to limited capacity at top

levels, a pre-existing data block may not get the chance to be moved to the ORAM tree.

31



We also observe that data blocks fetched from the read path are likely to be flushed to the

same or lower levels. Figure 13(b) illustrates how it works. Assume a (with path ID m) was

written to level k1 (as in Figure 13(a)). Now, We access another path q where path l and q

overlap from level 0 (the root) to level k2. We may not touch a if k1>k2; and write to k2 if

k1≤k2. Due to the low utilization in middle levels, such write is likely to be successful.

We conduct an experiment to compare the node reuse at different levels. Figure 14

summarizes the hit counts at different levels. From the figure, while top 10 levels account

for less 0.01% of total ORAM space, the requested data blocks can be found in these levels

for about 23% of total accesses.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

ge
 o

f 
H

it
s

Bottom Middle Top

Figure 14: Nodes at top levels have high reuse possibility.

Therefore, the top levels of an ORAM tree serve as an overflow buffer of the on-chip

stash. An accessed data block may be buffered temporarily in the stash and then written to

the top levels of the tree. As the execution proceeds, a hot block is likely to be brought back

to the stash to reuse while a cold block gradually sinks towards the leaf nodes of the tree.

32



3.3 The IR-ORAM Design

3.3.1 An Overview

In this dissertation, we develop IR-ORAM to exploit our findings to reduce the memory

intensity of each type of path accesses.

• We develop IR-Alloc to reduce the bucket sizes of middle level tree nodes. By exploiting

the low utilization of middle level nodes, IR-Alloc reduces the number of data blocks to

access for each ORAM path and thus the memory intensity of all three types of paths.

• We develop IR-Stash to architect a double-indexed set-associative sub-stash to adapt to

large tree top caching. It reduces the number of PosMap accesses and thus the memory

intensity of PTp paths.

• We develop IR-DWB to convert dummy path accesses to useful early write-back opera-

tions, which reduces the memory intensity of PTm paths.

3.3.2 IR-Alloc: a Utilization-aware Node Size Allocator for Reducing Intensity

of PTp/PTd /PTm paths

Traditionally, an ORAM tree uses one Z value, i.e., all buckets have the same number of

data blocks. However, our study reveals that nodes at middle levels have considerable low

utilization, indicating that 70% or more fetched data from these levels are dummy blocks

and thus discarded after fetching. For this reason, it would be beneficial to shrink the bucket

size at these levels. As an example, if we shrink the bucket to half of the original, we would

read 50% fewer blocks for buckets at these levels.

Figure 15 illustrates how IR-Alloc works. It adopts an allocation strategy with more than

two Z values: Z=2, 3, and 4 for tree level ranges [10, 16], [17, 19], and [20, 24], respectively.

1 For completeness, we set Z=0 for memory allocation for tree level range [0, 9]. We will

elaborate the details in the next section. With this allocation strategy, IR-Alloc only needs

to access 43 data blocks (=10×0+7×2+3×3+5×4) during one read (or write) path phase.

1Here we use the math range representation, i.e., level range [a, b] indicates levels a, a+1, a+2, ..., b.

33



... ...

...

...
Upper middle levels

  Z=2

Top levels

  Z=0 (in memory)

    =4 (in on-chip cache)

Lower middle levels

  Z=3

Bottom levels

  Z=4

Figure 15: The design of IR-Alloc scheme.

As a comparison, we need to access 60 and 100 blocks, respectively, for the Path ORAM

designs with and without a 10-level top tree cache.

We next study the design issues in IR-Alloc. (1) One issue is the reduction of the total

ORAM space as there are fewer block slots. This is negligible because the allocation in

Figure 15 only leads to around 0.9% space reduction. This is because most of the space of

a binary tree is from lower levels. For example, the space from top 20 levels account for

around 3.1% of the total space. (2) Another issue is that, while the middle levels satisfy the

overall space demand, a particular tree node may not have the space to hold the chosen data

block. Such a tree node may be able to hold that block if adopting the baseline Path ORAM

implementation. This is in general not a problem as the ORAM controller would save the

data block to a higher tree level, and eventually increase stash usage. As we experience more

path accesses, the block still have the chance to sink towards to the leaf node.

The background eviction. The original Path ORAM places blocks that cannot move

34



to the ORAM tree in the stash temporally [66] and faces protocol failure if the stash over-

flows, i.e., it has insufficient space to hold the blocks after reading a path. Ren et al.

introduce background eviction, which effectively converts the correctness problem to a per-

formance/overhead trade-off [59].

Since IR-Alloc reduces the number of empty slots on each path, fewer blocks may be

moved to the ORAM tree during the write path phase, which increases the possibility of

stash overflow. While it does not lead to security concern, too many background evictions

may degrade performance significantly. We will analyze its security in Section 3.3.5 and

study its performance impact in Section 3.4.

Choosing Z values. In this work, we adopt a greedy search algorithm to determine

the Z values at different levels. This algorithm is based on empirical studies (as in the

community and also shown in Figure 11) that a random trace maximizes the utilization of

stash entries as well as middle tree levels. Given an ORAM tree, we test run Path ORAM

using random memory traces under two constraints: (1) the space reduction is within 1%;

and (2) the increase of background evictions is within 15%. According to Figure 11, random

memory traces gives the worst case space utilization for middle levels, the focus of IR-Alloc.

We observe that a 15% or less increase of background evictions for random traces exhibits

negligible increase of background evictions for benchmark traces. We start with setting Z=3

for level 19 (depending on the tree size) and Z=4 for all other levels, and gradually shrink

lower levels Z values for finding a local maximal in performance improvement. The algorithm

depends only on the ORAM configuration and, in particular, not on applications. Once the

ORAM configuration is determined, We just go through the search process once and make

the choice applicable for all deployed systems. Therefore, the search overhead is negligible

in general. Note that we may want to run the search twice, once for IR-Alloc and once for

IR-Alloc+IR-Stash as the background eviction rate may differ.

35



LLC

Tag (Data, Path ID)

F-Stash
(Addr, Data, Path ID)

S-Stash
TT

ORAM 

controller

001

010 011

100 101 110 111

 000    001  010    011  100  101   110  111 Path ID:

Tree Top 

Table Address:

Path ID=010

Table entries 

to access are 

“0...01X..X”,

For 3 levels,

 we have

001 001
01X 01a
1XX 1ab

a b ...

(a) A set-associative stash to cache tree top (b) An example showing how to access tree top entries

001
010

111
......

xx

x

a=0, b=1

Figure 16: Exploit IR-Stash to effectively cache large tree top.

3.3.3 IR-Stash: a Double Indexed Stash Implementation for Reducing Intensity

of PTp Paths

Caching top tree levels is an effective way for reducing memory intensity. Maas et al.

proposed to merge the top three levels to the stash and slightly increase the stash size to hold

these blocks [46]. However, a major issue of this design is its scalability — the stash needs to

be expanded to hold (2m-1)×Z more blocks if we cache top m levels. In addition, the stash

needs to be fully associative. The stash may be accessed by the LLC using its block address

(to determine if the requested block is in the stash), or by the ORAM controller using its

path ID (to determine the blocks to expurge at write path phase). Therefore, it complicates

the access if we make the stash a direct map (or a set associative) cache by indexing it using

either the block address or the path ID. Unfortunately, integrating a fully associative buffer

is expensive. For example, if we cache top 12 tree levels, the enlarged stash has at least 16K

entries. The corresponding die area is about that of a 4MB 8-way set associative LLC. Thus,

it becomes less preferable when we need to move more top tree levels on-chip.

An alternative design is to buffer tree top in a dedicated on-chip cache and access them

according to the tree structure, i.e., as they are in the memory [83, 72]. The stash can

remain small (below 200 entries). In this design, the dedicated cache can only be accessed

by the ORAM controller and thus is invisible to the LLC. Each ORAM path consists of two

segments — top levels are in the buffer while the others are in the memory. The dedicated

cache design harvests most of the benefits in caching. In particular, when reading a path,

36



we search the buffer first. A buffer hit eliminates off-chip traffic and thus there is no need

to remap.

A major issue with the dedicated cache design is the increased PosMap accesses. To

determine if a data block is in the dedicated cache, the LLC needs to know the path ID of

the block, which demands finding its PosMap entry. This access is necessary if the block is

in the memory. However, if the block is in the cache, the PosMap access is a waste. Based

on the discussion in Section 3.2.3, the top tree levels have a small size but a higher reuse

possibility, which increases a non-negligible number of PosMap accesses. A PosMap access,

if missed in PLB, results in a full path access, which significantly degrades the Path ORAM

performance.

The IR-Stash Design. Figure 16 illustrates our IR-Stash design. Intuitively, we include

a large sub-stash for buffering the tree top entries and make it double-indexed to facilitate

both LLC and ORAM accesses. The reason why IR-Stash can reduce the intensity of PTp

paths is that, if the tree top is indexed only by block addresses, a large number of PosMap

accesses would be required to support ORAM path accesses. IR-Stash consists of two sub

components.

(1) A small fully-associative stash F-Stash that has around 200 entries. F-Stash is the same

as the traditional stash.

(2) A set-associative stash S-Stash that keeps blocks from the tree top. S-Stash is double-

indexed. For the cache organization, it is indexed using the block address (in user

space).

S-Stash is also indexed by a small pointer table TT , which helps to keep the tree structure

of the blocks in S-Stash. Each entry in TT corresponds to a bucket and saves four pointers

pointing to the data entries in S-Stash that save the data blocks contents and their path

IDs. We skip the code with all zeros, assign the code “00..01” as the table address of

the root node, and then continue the table address assignment level-by-level according

to the tree structure.

In the example in Figure 16(b), we cache top three levels and illustrate their table

addresses.

37



We next describe how IR-Stash supports the accesses from both LLC and the ORAM

controller. When LLC issues a request for a data block, it uses its block address to search

both sub-stashes in parallel. Given F-Stash is small and fully associative, and S-Stash is

set indexed by block addresses, the access is fast and incurs low access overhead. A hit in

either F-stash or S-Stash returns the block immediately and thus incurs no path

access or path remapping.

When the ORAM controller needs to access the tree top using a path ID, it follows

the same Path ORAM protocol. The only difference is that the tree top is stored on-chip

and thus uses TT table to identify the corresponding entries in S-Stash. To read a path,

the ORAM controller reads the memory portion of the path and then the on-chip portion.

For the on-chip portion, we need to access multiple buckets and access each bucket using

its table address. By employing the coding strategy as discussed above, we can infer the

tables addresses of these buckets. Note that maintaining TT is necessary because S-Stash

is indexed by block address (in user space) which is different from the physical address of

block location in the tree.

Assume the path to access is “a1a2...ai....” (1≤i≤ L-1)” and we cache top t levels on-chip,

we need to access t buckets and their table addresses are:
(t-1) zeros︷ ︸︸ ︷
00...00 1,

(t-2) zeros︷ ︸︸ ︷
00...00 1a1, ....,

1 zero︷︸︸︷
0 1a1...at−2, 1a1...at−1

For each table entry, we follow its four pointers to fetch the block contents and their

path IDs in S-Stash. To write a path, we follow the Path ORAM protocol to search F-Stash

and choose the data blocks to write back at each level. To improve caching effectiveness

and avoid address conflicts, S-Stash indexes the blocks using MD5 of their addresses. Our

experiments show that it evenly distributes the blocks.

When the ORAM controller fills in new blocks in the treetop buckets, we enter the chosen

blocks in S-Stash and update the pointers accordingly. If a block from F-Stash cannot be

moved to S-Stash because the target cache set is full, we skip picking this block for this

round and get it flushed to S-Stash or a memory bucket at a later time.

At context switch, we flush the entries in F-Stash to the ORAM tree. Since the entries in

S-Stash are cached tree bucket entries, they are encrypted, authenticated, and then written

38



back to their corresponding memory locations. The TT table is then discarded. we rebuild

the table to resume the execution.

3.3.4 IR-DWB: Converting Dummy Path Accesses for Reducing Intensity of

PTm paths

To mitigate the performance impact of dummy path accesses, we propose IR-DWB to

convert them to useful memory accesses. IR-DWB converts dummy accesses into free early

write-back of dirty blocks in LLC. Intuitively, IR-DWB searches for the dirty LLC entries

that are likely to be written back in the near future, writes them to the memory of these

entries, and marks these entries as clean so that it incurs low overhead when they are selected

for replacement. Since dummy accesses are exploited for this matter, these early write-backs

occur at no extra cost in terms of performance.

Figure 17 illustrates how IR-DWB works. It consists of two main subtasks: (1) finding

the appropriate dirty LLC entry; and (2) writing the dirty entry to memory. For the first

subtask, we keep a register Ptr that points to the dirty LRU entry of one LLC cache set. We

round-robin across all sets and search for the LRU entry when the LLC is idle. If the LRU

entry of the current set is not dirty, we proceed to the next cache set. If the pointed entry

is accessed and thus no longer an LRU entry, we clear Ptr (even if it is locked as discussed

next) and proceed to the next cache set. If no entry can be found, we pause the search for

1000 cycles and restart from a random set. To implement a round-robin search, we used a

small state-machine similar to autonomous eager writeback in [42] that is also adopted by

[67, 74]. Alternatively, candidates can be chosen by maintaining a queue as in eager queue

scheme in [42]. The latter approach can be adopted in case hardware overhead is a tight

constraint.

For the second subtask, we need up to three ORAM path accesses due to PosMap and

data accesses, i.e., two ORAM path accesses for PosMap1 and PosMap2, respectively, and one

path access for the dirty data block. For this purpose, we keep a register Stage to indicate

if the corresponding LLC entry is ready to be written to the memory. We set Stage=3 if

neither PosMap1 or PosMap2 mapping can be found in PLB; Stage=2 if PosMap2 is a

39



IR-DWB 

control

dirty LRU entry

LLC

Ptr

useful memory access

PLB

PosMap3

stage

Figure 17: The design of IR-DWB scheme.

PLB hit while PosMap1 is a miss; and Stage=1 if both can be found in PLB.

To defend timing channel attacks, Path ORAM issues path accesses at fixed rate and

inserts dummy paths when there is no real request. IR-DWB optimizes the implementation

as follows. When it is time to issue a dummy path access, IR-DWB checks if Stage=0

(indicating no LRU entry write-back is in progress). If Stage̸=0, IR-DWB continues the

unfinished dirty entry flush; otherwise, it locks Ptr and proceeds to flush the dirty LRU

entry pointed by Ptr. Depending on if we need PosMap accesses, we set Stage=3 for

accessing PosMap2 and Stage=2 for accessing PosMap1; and Stage=1 if both PosMap

entries are ready so that we can write the dirty data block. We decrement Stage after each

path access and mark the corresponding LLC entry as clean when Stage=0. During this

processing, if the dirty LLC entry pointed by Ptr is no longer a LRU entry, we abort the

early eviction by setting Stage=0; or if the entry is chosen as a victim entry, we abort the

early eviction by setting Stage=0 and perform the normal eviction instead.

From the discussion, for maximized benefit, IR-DWB requires three dummy path accesses

to write the selected LLC entry back to the memory. The corresponding LLC cache entry

is then marked as clean, which improves the replacement performance when it is selected as

a victim at a later time. In practice, we gain benefits if we have one or two dummy path

accesses and thus can only partially service the request.

Delayed Block Remapping. IR-DWB currently works with the traditional LLC evic-

40



tion strategy, i.e., a data block is remapped after its access; it is then placed in the LLC

[66, 21, 81]. An LLC-evicted data block, if being dirty, becomes a new memory access.

Alternatively, Nagarajan et al. [49] proposed a delayed data block remapping policy [49]. It

works as follows. After accessing a data block, the ORAM controller discards its mapping,

which eliminates the data block from the ORAM tree. The data block is added back to the

ORAM tree when it is evicted from the LLC. Under this policy, the writeback block uses the

ORAM-removed block in stash and thus shall not increase stash pressure. However, there is

a limitation, i.e., it demands PosMap accesses at write-back time. Given the corresponding

PosMap entry for servicing the initial access may not be in the PLB, it needs up to two

extra full path accesses for PosMap entries. The LLC and memory are not inclusive under

this policy.

Comparing the two data block remapping policies, the delayed remapping tends to intro-

duce extra PosMap access overhead when most of evicted data blocks from LLC are clean. As

shown in the experiment section, while the delayed remapping improves the overall baseline

performance, it may slowdown the read intensive benchmarks by more than 50%.

To integrate IR-DWB with delay data block remapping, we may proactively conduct

block remapping for LRU entries in LLC, and convert dummy paths to PosMap accesses to

eliminate the overhead at write-back. We may need extra table for the generated remapping

and thus leave it to future work.

Comparison. IR-DWB shares the similarity with eager writeback [42] for speeding up

the traditional write-back LLC. Both schemes evict the dirty LLC entries before they are

chosen for replacement. However, they differ as follows. (1) eager writeback tends to increase

off-chip memory bandwidth demand. IR-DWB only exploits dummy path accesses. Since

dummy path accesses consume the bandwidth anyway, IR-DWB does not introduce extra

memory bandwidth demand. (2) eager writeback may degrade the program execution as an

ongoing writeback request may block a user request that otherwise can be issued. IR-DWB

does not hurt the current or the next request as a dummy path access needs to finish before

the ORAM controller may issue another path access. Converting the dummy access does

not degrade the execution. (3) one eager writeback can be serviced by one extra memory

access while one IR-DWB may need up to three dummy paths.

41



3.3.5 Security and Correctness Analysis

Security Guarantee. Path ORAM is a security primitive that protects user privacy

through memory address obfuscation. It achieves memory obliviousness with two uniformity.

(1) Path accesses are not distinguishable. Even though there exists read or write user

requests, and ORAM path accesses can be categorized as three types (data block access,

dummy path access, and PosMap access), all path accesses look the same. An attacker

outside of TCB cannot distinguish either the memory request type or the path access

type.

Note, each path consists of one bucket access (or Z block accesses) to each tree level.

Given the memory addresses are in cleartext, the tree access is non-oblivious, i.e., an

attacker knows exactly when and what tree nodes are accessed.

(2) Access intensity is not distinguishable. By enforcing timing attack protection, the

ORAM controller issues one path access every T cycles. An attacker outside of TCB

cannot infer the path access type or application behavior. In particular, if timing attack

protection is not enforced, the first path access of a burst of several path accesses is more

likely to be a PosMap access.

In this section, we show that IR-ORAM enforces the above uniformity and thus the same

level of security protection. While IR-Alloc reduces the number of blocks read from some

tree levels, all paths are kept the same. Each individual path fetches the same number of

block from a particular tree level so that we cannot distinguish the type of a particular path

from the rest of all others. Similarly, eliminating access tree top nodes in IR-Stash and

converting dummy paths to useful paths in IR-DWB keep the obliviousness of path accesses.

The non-uniformity introduced in IR-Alloc, e.g., we fetch two blocks from level 12 and

four blocks from level 23, leaks no sensitive information. This is because memory addresses

are in cleartext, and the block-to-tree-level mapping is public information in the original

Path ORAM design. Note that here block does not refer to user data block; instead, it refers

to the block placeholders in the bucket, also known as slots. Since it is well known how the

bucket sizes are adjusted, exposing node level non-uniformity has no security concerns. For

the top tree cache design, we will not start off-chip memory accesses until we know if the

42



requested block is in the on-chip sub-stashes and prevent potential information leakage.

The information about on which path a particular data block resides, and which bucket

along the path contains that block, is secret information. The IR-Alloc design does not alter

the mapping of user blocks to paths in any way. Thus, just as the block-to-path mapping is

protected and secure in Path ORAM, it is also protected and secured in IR-ORAM.

IR-Stash does not alter the operation of the ORAM protocol within the untrusted base.

If a block is found in the S-Stash lookup, eliminating the need for PosMap accesses, it will not

have any observable impact from an outsider’s perspective. All paths are indistinguishable,

so the absence of a path access cannot be discerned by the attacker, much like when a block

is found in the regular stash in Path ORAM.

Similarly, IR-DWB does not affect the indistinguishability of path accesses. It neither

alters the pattern nor the frequency of path accesses. Its function is simply to piggyback on

existing path accesses. Just as dummy path accesses are indistinguishable from actual data

path accesses in Path ORAM, useful early write-back paths are also indistinguishable in

IR-DWB. If they were distinguishable, it would be possible to infer the type of path accesses

in Path ORAM as well.

In summary, the ORAM paths in IR-ORAM are kept the same pattern and at the fixed

rate. Thus, it ensures the same level of security protection as that in the original Path

ORAM.

Correctness Guarantee. IR-ORAM does not introduce correctness issue either. IR-

ORAM changes the way how the stash and the ORAM tree are constructed, which increases

the possibility of stash overflow. In the basic Path ORAM implementation, the protocol

fails if a stash overflow happens. Ren et al. introduced background eviction [59], which

effectively converts the protocol correctness problem to a performance/overhead trade-off.

In IR-ORAM, we enable background eviction if there are more blocks than a threshold after

any write path phase. In summary, IR-ORAM does not introduce correctness issue to Path

ORAM.

43



3.4 Experiment Methodology

To evaluate IR-ORAM, we used a trace-based simulator USIMM for cycle-accurate

DRAM memory simulation [11]. This is similar to the setting that was adopted in recent

Path ORAM studies [49, 72]. As shown in Table 1, we modeled a 4-issue OoO (out-of-order)

3.2GHz processor. There are two levels of data cache with the LLC (last level cache) be-

ing 8-way set associative 2MB. We modeled the ORAM tree following the typical setting

[21, 82, 49] — we protect 8GB memory with 4GB user data. We use Z=4, L=25 for baseline.

To collect the trace for evaluation, we used Pin tool [45] on SPEC CPU2017 suite [1]. For

each program, we skipped the warmup phase and then collected the trace that covers 2M L1

cache misses. We also picked a few traces obtained from PARSEC suite [6, 11]. Table 2 lists

the L2 misses per kilo instruction (MPKI) for all the benchmarks we picked. Benchmarks

were selected from both integer and floating point categories.

Table 1: System configuration for IR-ORAM evaluation.

Processor Configuration

Processor Fetch Width/ ROB Size 4 / 128
Memory Channels 4
DRAM Clk Frequency 800 MHz

L1 D-cache 2-way 256KB
L2 cache (LLC) 8-way 2MB

ORAM Configuration

Protected space and user data 8GB/4GB
ORAM tree levels 25
Bucket size/Block size 4 / 64B
Stash entries 200
Dedicated tree top cache 256KB (4K entries)

On-chip PLB / PosMap 64KB / 512KB

44



Table 2: Evaluated benchmarks from SPEC and PARSEC suite.

read write read write
Suite Benchmark MPKI MPKI Benchmark MPKI MPKI

S
P
E
C

gcc 0.1 0.3 bwa 0.0 20.7
mcf 19.5 0.1 lbm 0.0 45.3
xz 24.9 29.6 cam 0.01 8.8
xal 0.05 0.1 ima 0.3 2.9
dee 0.0 5.7 rom 0.02 23.0

P
A
R
S
E
C bla 2.6 0.4 fre 2.1 0.4

str 2.7 0.5

3.5 Experimental Results

We implemented and compared the following schemes.

• Baseline: this is the traditional Path ORAM implementation [66] that adopts Freecur-

sive [21] and has ten top tree levels cached in dedicated on-chip cache. It also adopts

the subtree layout to improve row buffer hits and background eviction to prevent stash

overflow [59].

• Rho: it is the ρ design [49] over Baseline. Rho implements a smaller tree and several

other optimizations. We chose the best setting (L=19, Z=2) for the small tree, included

other optimizations, and enforced the defense for timing channel attacks (We used 1:2,

i.e., one main tree access per two accesses to the smaller tree).

• IR-Alloc: it implements IR-Alloc over Baseline. We set Z=1 for tree level range [10,15],

and Z=2 for [16,18].

• IR-Stash: it implements IR-Stash over Baseline. For S-Stash, we tested different set

associativities and choose 4-way set associative in this dissertation.

• IR-DWB: it implements IR-DWB over Baseline.

• IR-ORAM: it integrates all three designs. It is built on top of Baseline. (It sets Z to 2

and 3 for tree level ranges [10,16] and [17,19], respectively.)

45



0

0.5

1

1.5

2

2.5

3
Sp

e
e

d
u

p
 Rho  IR-Alloc  IR-Stash  IR-DWB  IR-ORAM  LLC-D

Figure 18: The performance comparison of different schemes.

• LLC-D: it adopts the delayed data block remapping policy [49] on top of Baseline.

• IR-Stash+IR-Alloc (LLC-D as baseline): it is IR-Alloc and IR-Stash on top of LLC-D.

3.5.1 Performance Comparison

Figure 18 compares the performance of different schemes. The results are normalized

to Baseline. mix bar indicates mix trace of 3 different benchmarks. From the figure, Rho

achieves an average of 11% improvement. It exhibits a large degradation on mcf . This is

due to the mechanism integrated for defending timing channel attacks, which inserts many

dummy paths and offsets the benefit from accessing the smaller tree. This reduction may be

mitigated if making the defense application-specific (currently we used 1:2 ratio).

For our schemes, IR-Alloc achieves on average 41% improvement over Baseline. The

improvement comes mainly from the reduced number of data blocks to access for each path.

Since we reduce the memory intensity of all path types, the improvements are stable across

all benchmark programs. IR-Stash achieves on average 27% improvement over Baseline.

Given both Baseline and IR-Stash cache top ten levels of the tree, the improvement comes

mainly from the reduction of PosMap accesses. IR-DWB achieves on average 5% performance

46



improvement. When there were more dummy path accesses, e.g., gcc in the figure, we found

more opportunities for conversion, which helped to achieve higher improvement. For bench-

marks having few dummy path accesses, e.g., cam and dee, IR-DWB was rarely activated,

which led to close to zero performance impact.

When enabling all three proposed schemes, IR-ORAM achieves on average 57% improve-

ment over Baseline, or 42% improvement over Rho.

LLC-D improves Baseline for most of the benchmarks due to their high dirty eviction

rate. However, a read intensive benchmark like mcf experiences 1.9× slowdown. Figure

19 illustrates the speedup of IR-Stash+IR-Alloc over a baseline that adopts LLC-D. Our

two schemes can effectively improve a baseline with LLC-D adopted by 72% on average. We

observe a high speedup of 1.63× for mcf . This is because, with LLC-D baseline, the number

of hits in the tree top triples for this benchmark such that IR-Stash finds more opportunities

to reduce the number of PTp path accesses.

0

0.5

1

1.5

2

2.5

Sp
e

e
d

u
p

IR-Stash+IR-Alloc (LLC-D as baseline)

Figure 19: The performance comparison with LLC-D as baseline.

Since IR-Stash and IR-Alloc are orthogonal to timing channel protection feature, we

also measured their speedup without having timing channel protection. Our results showed

that IR-Alloc achieves slightly smaller speedup compared to when timing channel protection

47



was enabled (40% vs 41% in Figure 18). This is expected because with timing channel

protection being enabled some background eviction accesses are reduced due to existence of

inevitable dummy accesses.

By developing path type dependent techniques, IR-ORAM effectively reduces the memory

intensity of the Path ORAM.

3.5.2 IR-Alloc Overflow

While IR-Alloc changes the Z values for two tree level ranges, the discussion in Section

3.3.2 indicates that this selection is not unique — we may choose different Z values for

different tree level ranges, and all such selections may give good performance improvements.

g c c m c f o m n x a l b l a d e e b w a l b m f r e c a m i m a s t r r o m a v g
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e  I R - A l l o c 1  I R - A l l o c 2  I R - A l l o c 3  I R - A l l o c 4

Figure 20: Design exploration of IR-Alloc scheme.

To study the selection of Z values, we composed four configurations that set Z values

for different tree level ranges as follows. PL indicates the number of data blocks we need to

fetch per path. For all configurations, the memory shrinks below 1%. Of course, there are

more configurations available.

48



• IR-Alloc1:Z=2 for L10∼16, Z=3 for L17∼19 .... PL=43

• IR-Alloc2: Z=2 for L10∼16, Z=2 for L17∼18 .... PL=42

• IR-Alloc3: Z=1 for L10∼14, Z=2 for L15∼18 .... PL=37

• IR-Alloc4: Z=1 for L10∼15, Z=2 for L16∼18 .... PL=36

Figure 20 compares the performance of different IR-Alloc configurations. The results

are normalized to execution time of Baseline. For each bar, the shaded portion indicates

the time spent on background eviction. IR-Alloc4 is the same as IR-Alloc in Figure 18.

From the figure, in general, we tend to achieve larger performance improvement by reducing

the number of data blocks to access per ORAM path. In addition, aggressively reducing the

number of data blocks tends to incur large time in background eviction.

0 5 1 0 1 5 2 0 2 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0  0 B  0 . 1 B  0 . 2 B  0 . 3 B  0 . 4 B  0 . 5 B  0 . 6 B

 0 . 7 B  0 . 8 B  0 . 9 B  1 B  1 . 1 B  1 . 2 B  1 . 3 B
 1 . 4 B  1 . 5 B  1 . 6 B  1 . 7 B  1 . 8 B  1 . 9 B  2 B

 2 . 1 B  2 . 2 B  2 . 3 B  2 . 4 B  2 . 5 B  2 . 6 B  2 . . 7 B
 2 . 8 B  2 . 9 B  3 B  3 . 1 B  3 . 2 B  3 . 3 B  3 . 4 B

 3 . 5 B  3 . 6 B  3 . 7 B  3 . 8 B  3 . 9 B  4 B   o v e r a l l  a v g

Ut
iliz

ati
on

 Ra
te

L e v e l

Figure 21: Level utilization with IR-Alloc.

To study background eviction, Figure 21 shows the level utilization experiment similar to

that in Section 3.2.2 for IR-Alloc. Snapshots were taken at different times of the execution

49



using the same memory trace mix as in Figure 11.

From the figure, we observed that, for memory accesses from benchmarks, the top and

middle tree levels show high space utilization ratios than those before adopting IR-Alloc,

i.e., the utilization ratios in Figure 11. However, they are still low, meaning in general, the

background eviction is still low.

For randomized traces, the utilization ratios are much higher, i.e., more than 50% uti-

lization. In particular, we rarely found empty slots for tree nodes between level 0 and level

3. This indicates there is a high possibility of stash overflow. However, most benchmark

programs have stable working sets and IR-Alloc achieves performance improvements over

the Path ORAM implementation.

3.5.3 PosMap Reduction

We next investigated the effectiveness of IR-Stash in reducing position map accesses.

The amount of position map accesses for each program depends on its PLB hit rate and that

depends on the program memory access pattern, how much locality it experiences. IR-Stash

reduces position map accesses for the blocks that reside in top 10 levels. Figure 14 reports

the PosMap access hits across the benchmarks. The benchmarks that have higher hit rates

on top levels benefit more from IR-Stash. Figure 22 reports the normalized PosMap accesses

of IR-Stash over Baseline. From the figure, IR-Stash dramatically reduces the number

of PosMap accesses — on average, the number of PosMap accesses in IR-Stash are 49% of

those in Baseline.

For benchmarks that have large reduction, e.g., 94% for dee, IR-Stash achieves large

improvement of 87%. For the one with small reduction, e.g., mcf , it achieves low improve-

ment.

3.5.4 Dummy Path Accesses

IR-DWB is designed to exploit dummy accesses in timing channel protection mode for

early write-backs. Figure 18 shows its speedup. We also investigated its effectiveness in

converting dummy accesses. Figure 23 illustrates the percentage of each path access type.

50



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

o
sM

ap
 A

cc
e

ss
 R

at
io

Figure 22: Comparing PosMap accesses with Baseline.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
e

rc
e

n
ta

ge
 o

f 
A

cc
e

ss
e

s

PT_p (Pos2) PT_p (Pos1) PT_d  DWB PT_mPTp (Pos1)PTp (Pos2) PTd PTm

Figure 23: Access type distribution in IR-DWB.

51



Different benchmarks have a different ratio of dummy accesses. However, as shown in the

figure, IR-DWB is able to convert about half of dummy accesses for most of the benchmarks.

On average, IR-DWB reduces the percentage of dummy accesses from 11% to 6%.

3.5.5 Scalability Analysis

To evaluate the scalability of IR-Alloc, we used different sizes of protected memory,

i.e., 2GB (L=24) and 8GB (L=26), and summarized the results in Figure 24. For each

configuration, we applied the Z finding algorithm accordingly to find the appropriate Z

value at each level. We used the random traces as they set the performance lower bound

while exhibiting high probability in background eviction. Figure 24 compares the speedup

of IR-Alloc over Baseline for different memory sizes. The x-axis indicates the size of

user data which is half of the entire protected space. We conducted the experiment for

13 different random traces and reported the average speedup. The standard deviation of

different speedup results is low (=0.0001) as random traces lack locality.

2  G B  
( L = 2 4 )

4  G B
( L = 2 5 )

8  G B
( L = 2 6 )

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

Sp
ee

du
p

Figure 24: The scalability analysis of IR-Alloc.

Impact of block size. When adopting larger blocks, e.g., by a cloud server with remote

52



clients, the PosMap becomes smaller, which may be stored completely within TCB. This

eliminates the potentials that IR-ORAM can explore from IR-Stash. However, the benefits

from IR-Alloc remain untouched.

3.5.6 Overheads

Space overhead. By reducing the bucket sizes of selected tree levels, IR-Alloc re-

duces the total memory space. However, this reduction is negligible, the different IR-Alloc

configurations in Section 3.5.2 keep the space loss below 1%.

The IR-Stash design, comparing to the dedicated tree top cache design, keeps the tree

structure in a small table, which saves (210 − 1)× 4 pointers and each pointer is of 12 bits.

The total size is 6KB. In addition, it saves the tag array that the dedicated tree top cache

may not need. This overhead is modest comparing to the enlarged stash design.

Energy overhead. The energy overheads comes from (1) the extra stash evictions intro-

duced by IR-Alloc; (2) the extra table lookups in IR-Stash; and (3) the extra LLC/PLB

accesses for finding the IR-DWB candidates. Given the energy consumption of Path ORAM

comes mainly from memory accesses, the on-chip activities are negligible. For example, one

access to 256KB cache is around 0.6nJ while an access to 1GB memory is about 40nJ [5].

The more extra stash evictions, the higher energy overhead the IR-ORAM may have. In our

experiments, the number of extra stash evictions is low, incurring less than 5% of total en-

ergy consumption. Our energy saving in the memory systems is proportional to performance

improvement, i.e., about 57% over Baseline.

3.5.7 Conclusion

In this chapter, we propose IR-ORAM, a Path ORAM optimization that consists of a

set of techniques, to mitigate the high memory intensity of Path ORAM. In particular, we

propose IR-Alloc to reduce the number of data blocks that we need to access for each tree

path; IR-Stash to buffer top tree levels, which hybrids the extended stash and dedicated

cache designs to achieve effective PosMap access reduction; IR-DWB to convert a significant

portion of dummy path accesses to write back dirty LRU entries in LLC. On average, IR-

53



ORAM achieves 42% performance improvement over the state-of-the-art while effectively

enforcing the memory access obliviousness and the same level of security protection.

54



4.0 AB-ORAM: Constructing Adjustable Buckets for Space Reduction in

Ring ORAM

4.1 Space Reduction Overview

Modern computer systems widely adopt the detached-memory architecture, i.e., the pro-

cessor chip integrates a memory controller on-chip and sends memory addresses and device

commands in cleartext on memory buses [37]. Even if the user data may be secured with

strong encryption and authentication schemes, e.g., AES encryption [19], Merkle tree au-

thentication [24], it is possible to leak sensitive information from access patterns in memory

addresses [86, 78]. To ensure high-level protection of user privacy, it is necessary to adopt an

expensive ORAM primitive that obfuscates memory requests from the user program [25, 26].

Ring ORAM is a recently proposed secure primitive for mitigating the large performance

degradation of ORAM [58]. Ring ORAM is built on top of Path ORAM [66], an ORAM

primitive that organizes data blocks in a binary tree structure and converts each user memory

request to two path accesses in the tree, which incurs large performance degradation, i.e.,

O(logN) complexity where N is the number of to-be-protected data blocks. Ring ORAM

optimizes the protocol by differentiating two types of accesses: online and offline accesses.

The former refers to those servicing the real user requests while the latter refers to those for

protocol maintenance. While Ring ORAM has the same overall complexity as that of Path

ORAM, i.e., O(logN), it fetches one data block from each tree bucket for online accesses,

representing 1
Z
memory bandwidth requirement over Path ORAM, where Z is the number

of data blocks in each tree node. With special hardware support, the memory bandwidth

requirement for online accesses can be further reduced to O(1).

A major concern of Ring ORAM is its low space utilization. Path ORAM needs to double

the memory space such that there are sufficient empty slots spreading across the ORAM tree

and it has low possibility to remap a data block to a path with no empty slot [66]. This

leads to 50% space utilization. The space utilization is defined as the size of the real user

data over the size of the ORAM tree. Ring ORAM has even lower space utilization as it

55



allocates more dummy blocks. For a typical setting [58], a 12-entry tree bucket keeps (1)

five blocks for block remapping. Based on the above discussion, on average, there are 2.5

blocks holding real data while the rest holds dummy data; and (2) seven dummy blocks for

Ring ORAM operations. This represents a 2.5/12= 21% space utilization.

Given memory resource is precious for modern computers, the low space utilization tends

to introduce large performance and energy consumption overheads. Cao et al. addressed the

space utilization issue with bucket compaction (CB), a design that shrinks the bucket size

and utilizes a portion of real blocks as reserved dummies when needed [7]. CB prevents the

stash overflow possibility with more frequent background eviction, a performance/overhead

trade-off optimization proposed for Path ORAM [59]. Unfortunately, space utilization with

bucket compaction may be improved to 31%, which remains a major design obstacle for

Ring ORAM adoption. For this matter, some studies try to improve the performance of

Path ORAM without increasing the space demand. For instance, IR-ORAM is the latest

optimization proposed upon Path ORAM that improves the performance while it maintains

50% space utilization. However, it still has lower performance than Ring ORAM. In this

work, our goal is to achieve optimum space utilization and performance simultaneously.

This chapter introduces AB-ORAM to improve the space utilization of Ring ORAM im-

plementation while maintaining the high performance benefit of Ring ORAM. The proposed

AB-ORAM focuses on space reduction. We define space reduction as the reduced total

size of the ORAM tree. Note that this reduction only affects the dummy part of the ORAM

tree, and the real part, i.e., user data, remains intact. As such, AB-ORAM also effectively

improves the space utilization (= user data/ ORAM tree size) as the ORAM tree size is

reduced. The contributions of AB-ORAM are summarized as follows.

• AB-ORAM exploits two inefficient use of memory space in Ring ORAM: (i) a data block

becomes a dead block after its first access and holds useless data till the next bucket

reshuffle or path eviction; (ii) larger buckets that contain more dummy blocks help to

support more path accesses till the next expensive bucket reshuffle or path eviction.

However, for tree levels close to the leaves, its performance benefit diminishes fast while

space demand increases dramatically.

• AB-ORAM addresses the inefficient use of memory space with optimized bucket allo-

56



cation. AB-ORAM dynamically tracks dead blocks and adaptively allocates them to

buckets that demand reshuffle, i.e., those due to bucket reshuffle or path eviction op-

erations. This helps to reclaim dead blocks early and thus reduces the overall space

demand. By exploiting the space/performance trade-off at different levels, AB-ORAM

adopts a statically fixed but non-uniform bucket space allocation strategy. It decreases

the number of dummy blocks for the levels close to the leaves.

• We evaluate the proposed AB-ORAM design and compare it to the state-of-the-art. Our

results show that AB-ORAM achieves on average 36% space reduction over the state-of-

the-art while introducing very low performance overhead.

We use the same threat model as those in prior ORAM studies [66, 58]. Our discussion

is based on a standalone secure processor while the design is applicable to cloud setting with

a secure server and remote clients. For the standalone secure processor, we assume that

only the processor can be fully trustworthy, i.e., the trusted computing base (TCB) includes

the processor only. The program code and data are stored in ciphertext in memory. An

on-chip secure engine encrypts data before writing to memory and decrypts after fetching

from memory. The data are also authenticated to ensure data integrity. Prior studies have

shown that hardware-assisted security enhancements can effectively reduce the encryption

and authentication overheads [71, 68, 24]. To prevent memory traces from leaking sensitive

information, the baseline configuration adopts Ring ORAM.

4.2 Ring ORAM Space Demand

4.2.1 Ring ORAM with Bucket Compaction

Cao et al. proposed to shrink the bucket size while keeping Z ′ and S parameters intact

by introducing the concept of overlap [7]. In this scheme, the bucket size is Z, and Z ′ blocks

are dedicated to real blocks. Then, S can have a value of Z−Z ′+Y , where Y is the number

of blocks for overlap. In this way, when all dummy reserved blocks of a bucket are used,

a block from the portion dedicated to real blocks can be returned to the processor. That

57



block is called a green block and may be either dummy or real. In case it is real, it has to

remain in the stash. This can increase the chance of stash overflow. To address this issue,

they proposed to generate dummy accesses if the stash occupancy reaches a threshold. Thus,

dummy insertion continues until evictPath operation frees up the stash below the threshold.

If we consider the typical setting of Ring ORAM, Z ′ = 5, S = 7, Z = 12 as a baseline, by

applying the bucket compaction scheme with Y = 4, the allocation will be Z = 8, Z ′ = 5

and S = 3. In this chapter, we built our design on top of this state-of-the-art.

4.2.2 Broad Impact of Space Reduction

Studies have shown that securing memory access patterns demands ORAM [25, 26]

as simple obfuscation [86] tends to provide limited security protection. Unfortunately, all

ORAM protocols have high performance overheads, in particular, they introduce orders of

magnitude more memory accesses. Of different ORAM protocols, Ring ORAM has low

online memory bandwidth request, making it a promising protocol for practical deployment.

However, Ring ORAM’s space utilization is low, which increases memory contention with

co-running applications. As main memory is one of the most precious system resources in

modern systems, reducing space demand can effectively make better use of main memory

resource, leading to improved system performance, throughput, and power/energy consump-

tion.

4.3 Motivation

For a typical Ring ORAM setting [58], its space utilization is as low as 21%, making it

one of the main obstacles that prevent Ring ORAM from wide deployment.

We made two key observations regarding the low utilization of memory space in Ring

ORAM. In the following, we elaborate these observations and discuss how to exploit them

to improve the space efficiency. The first observation is the existence of dead blocks in the

ORAM tree i.e., a memory block, once invalidated by a readPath access, remains useless

58



until it gets refreshed by evictPath or earlyReshuffle. The second observation is that there

exists a space/performance trade-off on the bucket size at different tree levels. For the levels

close to the leaves, a large S value results in more space consumption but less performance

improvement.

4.3.1 Studying Dead Blocks

A bucket slot in Ring ORAM tree can be accessed at most once between any two reshuf-

fles. The ORAM controller marks the slot as invalid after its readPath but does not reclaim

the space until a later evictPath or earlyReshuffle operation that stores the newly reshuffled,

encrypted, and authenticated data. Given evictPath adopts reverse-lexicographic order [58]

and earlyReshuffle is on-demand, the duration of the slot being invalid can be relatively

long, which lowers down the memory efficiency. In this chapter, the invalid bucket slots are

referred to as dead blocks.

We conduct an experiment to track the total number of dead blocks for different bench-

marks and summarize the results in Figure 25. The settings are listed in Section 4.6. The

X-axis shows the program execution in the total number of online accesses. The Y-axis

shows the snapshot of the total number of dead blocks. From the figure, the number of dead

blocks increases quickly at the beginning of the execution and stabilizes after 30M online

accesses. Due to high similarity of the results, the figure only reports the results from three

individual benchmarks and the average of all benchmarks. The reason why the results are

highly similar is, Ring ORAM is an effective pattern obfuscation protocol, it randomizes the

accesses such that different benchmarks have similar access patterns for outside observers.

Dead blocks are generated from online accesses at a stable rate, i.e., every readPath

generates L dead blocks, where L is the tree height. The elimination of dead blocks, i.e.,

reclaiming invalid blocks through evictPath and earlyReshuffle operations, exhibits low rate

at the beginning of the execution, and then stabilizes for the rest of program execution.

EarlyReshuffle always gets triggered when a bucket accumulates S dead blocks. The chance

is low at the beginning of the execution. For the path determined by evictPath, there are few

dead blocks along the path at the beginning of the execution so that only few dead blocks

59



100M 200M 300M 400M

26M

28M

30M

32M

34M

36M
#

 D
e

a
d

 B
lo

c
k

Access

 wrf

 ima

 gcc

 avg

Figure 25: Dead blocks over time for different benchmarks.

17.97M

8.39M

0 5 10 15 20 25

0

4M

8M

12M

16M

20M

0

4M

8M

12M

16M

20M

#
 D

e
a

d
 B

lo
c

k

Level

#
 B

u
c

k
e

t

Figure 26: Dead blocks across the levels.

60



can be reclaimed. With more online accesses, the dead blocks spread across all paths such

that picking up any path has around L dead blocks to reclaim. This helps to stabilize the

total number dead blocks.

For the 24-level ORAM tree in Figure 25, the dead blocks account for around 18%

(=36M/(12×(224-1)) of the total ORAM space. That is, around 18% of the allocated space

is wasted at any time after entering the stable execution stage.

Figure 26 reports the numbers of existing dead blocks at different tree levels after running

400 million traces. At each tree level (X-axis), the bar shows the number of dead blocks

(Y-axis to the left) and the line dot denotes the number of buckets at that level (Y-axis to

the right). As shown in the figure, the last level contains 17.9 million dead blocks. Given

that the last level has about 8 million buckets, on average, there are 2.1 dead blocks per

bucket.

4.3.2 Studying Space/Performance Trade-off

In this section, we study the trade-off between space and performance in Ring ORAM.

As discussed before, there are S reserved dummy blocks allocated for each bucket in Ring

ORAM. During the readPath, only one bucket returns a real block while all other buckets

along with the path return dummy blocks. Any bucket, if having been accessed S times, may

run out of dummy blocks and thus needs to be reshuffled, i.e., triggering an earlyReshuffle

on this bucket. Thus, the larger the S value is, the less number of earlyReshuffle operations

the Ring ORAM would need. Of course, a larger S value results in more space wasted in

saving dummy data. In addition, a larger S value leads to more blocks in each path, making

it more expensive to complete evictPath. Accordingly, if we reduce the S value, the number

of earlyReshuffles increases but at the same time the cost of evictPaths decreases.

We conduct an experiment to expose the space/performance trade-off. In Figure 27, we

compare the space and performance impacts when reducing the S values for the bottom

seven levels (that account for 99% of the entire capacity). L-x means reducing the S value

by three for the last x levels. The baseline adopts the typical setting [58], Z = 12, Z ′ = 5,

and S = 7. From the figure, as we reduce the S values for more levels, the space demand

61



1.00

0.87

0.81

0.78
0.77 0.76 0.75 0.75

L0 L1 L2 L3 L4 L5 L6 L7
0.7

0.8

0.9

1.0

N
o

rm
a

li
z
e

d
 S

p
a

c
e

1.00
1.01

1.02

1.04

1.05

1.07

1.09

1.11

L0 L1 L2 L3 L4 L5 L6 L7

1.00

1.05

1.10

S
lo

w
d

o
w

n

Figure 27: Space demand across different path length normalized to the baseline (top),

slowdown over the baseline (bottom).

reduces while the performance degrades. When the bucket size is reduced so is the path

length, hence, the path eviction incurs less number of memory accesses. The space saving

stabilizes after reducing the last three levels. In the experiment, there is a large increase of

the number of earlyReshuffles. However, the reduction from conducting cheaper evictPaths

benefits more. As figure shows, the execution time grows linearly whereas the space reduction

is in logarithmic scale. Hence, by shrinking the S value for the levels close to the leaves, we

can achieve a significant space reduction while incurring a low performance overhead.

4.4 The AB-ORAM Design

4.4.1 Overview

In this section, we elaborate on AB-ORAM design for reducing the space demand for Ring

ORAM. AB-ORAM consists of two designs — one is to early reclaim the dead blocks while

62



the other is to reduce the number of dummy blocks for bottom levels with a non-uniform S

value setting.

Dead Block Reclaim. To reclaim dead blocks, we adopt a new block allocation mecha-

nism called remote allocation. To enable remote allocation, we first construct a FIFO queue

to track recently generated dead blocks at each bottom tree level and update the metadata

accordingly. We then reduce the initial S value, i.e., the number of reserved dummy blocks,

for the buckets at bottom levels and extend the S value to its original using the space

reclaimed from dead blocks. Given a binary tree doubles its size with every extra level,

reducing the S value at the bottom levels can effectively reduce the space demand for Ring

ORAM.

Non-uniform S Setting. By exploiting the performance and space-saving trade-off at

the bottom levels, we propose to reduce the S value for bottom tree levels. While such a de-

sign increases the number of earlyReshuffle operations and slightly degrades the performance,

it achieves large space savings.

For the first scheme, we need remote allocation and altering S value. While the second

scheme only involves altering S value. Thus, we organize the rest of this section as follows.

First, we discuss the remote allocation. Then, we discuss how we can exploit altering S value

for each of our schemes.

4.4.2 Remote Allocation

4.4.2.1 One Extra Level of Address Mapping

Ring ORAM consists of three levels of address mapping, as shown in Figure 28(a). A

memory address of a user request is first mapped to a path ID in the ORAM tree. This

mapping is randomized and secured by the ORAM protocol, i.e, encrypted as position map.

Given a path ID, we can use the well-known tree organization knowledge to translate it

into a list of tree buckets. Depending on the operation, we may get all block addresses for

the selected buckets (for evictPath and earlyReshuffle) or one block address per bucket (for

readPath). The latter is determined by the metadata, which is also secured and part of

the Ring ORAM protocol. Given a tree block address, the OS translates it to the storage

63



location, i.e., the physical addresses in the main memory. From the figure, mapping from a

path ID to all its related tree buckets/blocks, and from a tree block to the address in the

memory is not protected and is thus known to the attackers.

User Request Address

Path ID

TCB

ORAM PosMap

Tree Bucket 

Addresses 

Tree Structure

Physical Address in Main Memory

OS Managed Page Table

(a) Ring-ORAM address mapping

Same Tree 

Block Address

Tree Block Address 

(b) AB-ORAM address mapping

AB-ORAM Managed Mapping

One 

Tree Block

Per Bucket

MetaData

All Tree Blocks

of Selected

Bucket

evictPath or 

earlyReshuffle
readPath

Reclaimed 

Dead Tree 

Block Address

Physical Address in Main Memory

(Physical tree address)

(Logical tree address)

OS Managed Page Table

In-pace

Allocation

Remote

Allocation

Figure 28: AB-ORAM adds one more level of address mapping in the insecure domain.

To reuse the dead blocks, AB-ORAM introduces one more level of address mapping, as

shown in Figure 28(b). The translation from a memory address of a user request to a list of

tree block addresses is kept the same as that in the baseline. To facilitate the discussion, we

differentiate two tree block addresses — logical tree addresses and physical tree addresses.

Conceptually, the logical tree address of a data block determines where the block should

stay according to tree organization. The physical tree address determines its actual location

due to space availability. AB-ORAM saves this mapping in bucket metadata, however, the

mapping is kept in cleartext and thus known to the attackers.

Based on if a block’s physical tree address is the same as its logical tree address, we have

64



two types of data allocation.

• In-place allocation: This refers to the case when a block’s physical tree address is the

same as its logical tree address. For example, all blocks in the baseline implementation.

In AB-ORAM, the block in the top and middle levels keeps the same logical and physical

tree addresses.

• Remote allocation: This refers to the case when a block’s physical tree address differs

from its logical tree address. After fetching a tree block for readPath, AB-ORAM marks

the corresponding block as dead and may reclaim it by allocating it to a different logical

tree block. In Ring ORAM, both evictPath and earlyReshuffle need to write reshuffled

secure data back to the memory. They may demand space allocation and set up the

corresponding mapping for remote allocation. The mapping is kept in the metadata in

cleartext.

. . . . . .

. . .

DeadQ

a

a

. . .

. . .

ORAM TreeMetadata

cb

Count = 1

...

remote allocation pointer

(remoteAddr + remoteInd)

root

Eliminated block slots
New architectural components pointing to remote locations

Z = 10

Z’ = 5

S = 5
dynamicS = 7Path l

Path l

Figure 29: An overview of remote allocation in AB-ORAM.

4.4.2.2 Tracking Dead Blocks

To enable remote allocation, we need to dynamically identify the dead blocks in the

ORAM tree so that we can reuse them later. This consists of two sub-tasks. One is to

collect the addresses of dead blocks while the other is to mark the status of tree blocks in

metadata.

Tracking Queues. In Ring ORAM, dead blocks are generated from readPath operations

— each readPath fetches L blocks such that all of them become dead after the access. While

65



all L blocks can be potentially claimed, our study in Section 4.7.4 reveals that the dead

blocks in the top and middle levels tend to have short lifetimes and they account for a small

portion of the total memory space. As such, we skip these levels and maintain several FIFO

queues with one for each bottom level, referred to as DeadQ queues, to track dead blocks

at each corresponding level. Each entry in the queue maintains two fields that define the

physical location of a dead block (or an empty slot): {slotAddr, slotInd}.

AB-ORAM maintains all the DeadQ queues inside the processor, i.e., on-chip. However,

this information does not need to be secured. Our security analysis shall prove that it does

not compromise security protection if the attacker knows this information. Given the limited

on-chip space, each DeadQ maintains a small number of entries, e.g., 1000 entries. Since they

are FIFO queues, the maintenance cost is low. The design goal of the DeadQ is not to track

all dead blocks at each level. Instead, it is to collect a good amount of dead blocks so that

we can exploit dead blocks to meet part of the space allocation demands for the following

evictPath and earlyReshuffle operations. We keep one queue for each level because according

to our analysis the lifetime of dead blocks from different levels exhibit orders of magnitude

difference as shown in Figure 35.

Tracking Metadata. Since we add one level of address mapping, we need to precisely

know if a tree block adopts in-place allocation or remote allocation. AB-ORAM achieves

this by keeping per block status information in the metadata of each bucket. Table 3 details

the organization of bucket metadata in Ring ORAM and AB-ORAM. For clarity, we divide

metadata fields into two categories, block-related and slot-related. The block-related metadata

of a bucket contains information about the blocks that have been mapped to this bucket.

Whereas the slot-related metadata indicates information about the slot itself, i.e. the physical

location.

Ring ORAM maintains metadata for each bucket, as listed in Table 3, to facilitate the

protocol operation. When accessing a bucket with readPath, we increment its count and

invalidate the corresponding slot. The addr and ptr fields determine at what slot each real

block resides in the bucket.

AB-ORAM adds five pieces of metadata to Ring ORAM: four block-related (remote,

remoteAddr, remoteInd, and dynamicS) and one slot-related (status). The remote flag

66



Table 3: Organization of bucket metadata in Ring ORAM and AB-ORAM.

Metadata Field AB-ORAM (bit) Ring ORAM (bit) Function

Block-related

count 1× log(S) 1× log(S) Number of times the bucket has been touched since the last refresh
addr Z ′ × log(NBlock) Z ′ × log(NBlock) Address for each real block
label Z ′ × (L+ 1) Z ′ × (L+ 1) The path ID of each real block
ptr Z ′ × log(Z) Z ′ × log(Z) Offset in the bucket for each real block
valid Z×1 Z×1 Indicates whether the corresponding block is valid
remote R×1 - Indicates whether the corresponding block is located at a remote location
remoteAddr R× log(NBucket) - Address of the bucket in which the corresponding block is remotely allocated
remoteInd R× log(Z) - Offset in the bucket of the remotely allocated block
dynamicS log(S) - The current S value of the bucket (based on the last allocation)

Slot-related status Z×2 - Indicates the slot status (REFRESHED, ALLOCATED, DEAD)

indicates whether the corresponding block adopts in-place or remote allocation, i.e., if the

logical and physical locations of the block are the same. In the case that they are not the

same, remoteAddr and remoteInd identify the physical location of the block in the tree.

The status of all slots is initially REFRESHED once they are written to the ORAM tree.

When a block is accessed during the readPath, it must be invalidated according to the Ring

ORAM protocol. Thus, its valid flag is turned off. At this point, the status of the slot

that contains this block becomes DEAD since it is carrying a dead block. A slot is marked as

ALLOCATED when it is added to AB-ORAM’s DeadQ.

Table 3 states the size of metadata fields in terms of ORAM parameter. Note that NBlock

and NBucket are the number of real blocks and the total number of buckets in the ORAM

tree, respectively. R indicates the maximum number of slots that AB-ORAM allows remote

allocation per bucket. All other parameters match those introduced in Section 2.3.3.

Tracking procedures. In summary, we have the following two lightweight procedures.

• markDEAD(): it marks the status of a slot as DEAD when its occupant block turns dead

(i.e. valid= 0). Note that the block may be either in-place-allocated or remote-allocated.

It is invoked at the metadata access of readPath.

• gatherDEADs(): it adds information of all the DEAD slots along a path into the corre-

sponding DeadQ with the format of {slotAddr , slotInd}. Then, it marks status of

that slot as ALLOCATED so that no one else will use it. It is invoked at the metadata access

of readPath.

67



4.4.2.3 Remote Allocation

In Ring ORAM, only evictPath and earlyReshuffle can write data blocks to the main

memory. All data blocks take in-place allocation in the baseline Ring ORAM implementa-

tion.

Next, we illustrate how to remotely allocate a data block (with logical tree address A)

at a bottom tree level.

(1). We first dequeue a DEAD block from its corresponding DeadQ. Let us assume the

tree block address of it is T .

(2). We then write block A in block T . Note that no access or update on metadata for

block T is needed. Since block T is looked up from the DeadQ, its status has already been

updated as ALLOCATED (at the time it was queued).

(3). We update the block-related metadata of block A. The remote flag is raised and

remoteAddr and remoteInd are set to point to block T . All other block-related metadata

pieces are updated as they are in the Ring ORAM.

Figure 29, demonstrates the remote allocation. In the figure, after accessing block a on

path l, it is marked as dead and added to the DeadQ. Block b and c are remotely allocated

and the mapping identifies the physical tree addresses.

4.4.3 Altering the S Value for Space Savings

We next elaborate on how to change the S value for better space savings. It consists of

two designs. One is to extend the S value to take advantage of the remote allocation. The

other is to set the non-uniform S values for more space savings.

4.4.3.1 Extending the S Value with Remote Allocation

While remote allocation can early reclaim the space occupied by dead blocks, the baseline

tree allocation actually cannot exploit its benefit — in the baseline, every logical tree block

has its physical tree block allocated so that there is no need to “reuse” the space of dead

blocks.

68



There exist two alternative strategies to exploit remote allocation. Based on the typical

ORAM setting Z ′ = 5, S = 7, Z = 12, A = 5, assume we apply remote allocation to the

bottom levels, taking level 23 as an example.

(1). We allocate 12 blocks (Z = 5 + 7 = 12, S = 7) for each bucket at this level. At

runtime, based on the generation rate of dead blocks, we can extend the bucket size to

Z = 5 + 9 = 14, S = 9, i.e., each bucket can sustain 9 readPath accesses, instead of 7

readPath accesses, before triggering an earlyReshuffle.

(2). We allocate 10 blocks (Z = 5 + 5 = 10, S = 5) for each bucket at this level. At runtime,

we recover the bucket size to Z = 5 + 7 = 12, S = 7. Each bucket can still sustain 7

readPath accesses, even though we physically only allocate 5 reserved dummy blocks.

For either strategy, after extending the S value, each bucket has two fewer physical

blocks, e.g., strategy (1) allocates 12 entries for one bucket but tries to use it as a 14-entry

bucket. We, therefore, allocate two logical blocks to the reclaimed dead blocks. The two

strategies have different emphases — the first strategy saves no space comparing the baseline.

However, it reduces the number of earlyReshuffle operations and thus potentially improves

the performance. The second strategy focuses on space savings. It uses smaller space for the

initial tree allocation but tries to achieve the same effectiveness as the baseline. Given this

chapter focuses on space savings, we adopt the second strategy in AB-ORAM.

AB-ORAM initializes the ORAM tree with the bucket size for bottom tree levels being

set as Z− r where r denotes the applied space reduction. Based on the study in Section 4.3,

we identify r as 2 for the baseline setting. The r value depends on the choices of Z, Z ′, and S

values, i.e, it depends on the ORAM tree, while being independent of the secure applications.

After one complete round of tree reshuffle, i.e, applying evictPath to every path, we start to

extend S values for the bottom levels. The number of sustained readPath accesses before

earlyReshuffle is also updated to the new value.

In the design, when the DeadQ is empty, we may skip extending the S value for a bucket

at the bottom level. This may happen either at evictPath or earlyReshuffle time. To facilitate

the transition and the empty-queue case, we keep a counter dynamicS for each bucket, as in

Table 3. It tracks the number of readPath that it can sustain, dynamicS is extended to S+2

69



only for the buckets that allocate their two logical tree blocks in reclaimed dead blocks.

4.4.3.2 The Non-uniform S Value

The motivational study in Section 4.3 revealed that, if we choose to reduce the S value

for a number of bottom tree levels, there exists a trade-off between performance overhead

and space savings. Therefore, we can take a non-uniform S value design that sets S1 and

S (0≤ S1< S) values for the bottom k tree levels and for the other tree levels, respectively.

Here S is the same as the baseline while S1 is a smaller value. By reducing the S values for

k bottom levels, we tend to suffer from a small performance degradation but achieve space

savings.

Figure 27 in Section 4.3 shows that the space savings are about to saturate at L3 while

the performance loss is low (about 4%). The result was for S1 = S − 3. However, if we take

a different S1 value, the trend of space savings stay the same while the performance loss may

vary. We, therefore, set k = 3 or k = 2 and adjust S1 according to the space utilization. Our

experiment study shows that S1 can be set as S-2 and S-1 for the baseline Ring ORAM and

an optimized implementation that makes better use of space, respectively.

We propose two designs in the paper — (1) Initially allocating smaller buckets (with

smaller S value) for several bottom tree levels and extending the S value at runtime; (2)

Assigning a smaller S value for several bottom tree levels. While both designs shrink the S

value, they differ from each other as they have different design goals. The former allocates

fewer physical tree blocks for these buckets and exploits dead blocks to mitigate the physical

space reduction, i.e., recover to the same S value and sustain the same number of readPath

accesses as those of the baseline. The performance overhead comes from accessing remote

blocks for a subset of tree entries. The latter permanently reduces the S value for the bottom

tree levels such that these buckets can sustain fewer readPath accesses. The performance

overhead comes from increased earlyReshuffle operations. By shrinking the S value, the

latter design improves the evictPath performance.

It is worth noting that the Skewed Merkle Tree was proposed to reduce the number of

memory accesses [69, 87]. A skewed tree features imbalanced left and right subtrees, resulting

70



in varying path lengths. Conversely, AB-ORAM maintains the full binary tree structure but

reduces the size of the nodes at certain levels, meaning that paths retain the same length.

Table 4: Summary of the state-of-the-art ORAM implementations.

Ring ORAM IR-ORAM Bucket This work

[58] [56] Compaction [7] Dead block reclaim Non-uniform S value

Space demand - improved improved improved improved

Online access - - - slight more -

Bucket reshuffle - - - slight more more

Path eviction - - improved slight more improved

Background eviction - more more - -

4.4.4 Comparison to the State-of-the-arts

Table 4 summarizes the latest optimizations proposed on ORAM. One of the key im-

provements in IR-ORAM is to reduce the path access overhead by shrinking the Z value

for the middle levels. IR-ORAM reveals that middle levels are under-utilized. Besides, they

account for a small portion of the entire capacity. Thus, shrinking the buckets of these lev-

els improves the performance without affecting the capacity [56]. However, it increases the

probability of the stash overflow, hence, it may incur more background evictions than the

baseline. IR-ORAM was proposed to optimize Path ORAM [66] while the principal can be

adopted to optimize the portion of Z ′ entries of tree buckets in Ring ORAM.

Bucket Compaction (CB) [7] was proposed to shrink the bucket size for Ring ORAM by

reducing the S value. This too reduces the path access overhead so that evictPath operation

costs less. Unlike IR-ORAM, CB applies the shrinking to buckets of all levels so it reduces

the space demand effectively. Note that this reduction only affects the number of reserved

dummy blocks so the capacity of the tree for storing real data blocks remains intact. Like

IR-ORAM, it may increase the number of background evictions because real blocks may be

returned to the stash instead of dummy blocks.

As discussed, we develop two schemes in this chapter, i) extending the S value for bottom

71



levels by reclaiming dead blocks, and ii) setting non-uniform S values for the ORAM tree. For

the former, we shrink the S value like CB but we compensate for the performance impact

by extending the S value via remote allocation. Since remote allocation means address

redirection, it may incur a slight increase in memory block accesses due to lower row buffer

hit in DRAM DIMMs. Our experimental results show that this overhead is negligible. The

latter design shrinks the bucket size of levels close to the leaves, which helps to reduce the

overhead of each evictPath operation. This increases the number of earlyReshuffle operations

for those levels. However, the reshuffle operations are off the critical path and thus exhibit

a low impact on performance.

More importantly, the proposed two schemes are orthogonal to both IR-ORAM and

bucket compaction. By adopting our schemes on top of IR-ORAM or CB, We are able to

further reduce the space demand of Ring ORAM. The space utilization of the fully optimized

Ring ORAM implementation is made comparable to that of Path ORAM, i.e., around 50%.

4.5 Security and Correctness

In this section, we show that AB-ORAM ensures the same level of security guarantee as

that of the baseline Ring ORAM. Since AB-ORAM consists of two design, we next elaborate

that both designs are secure.

4.5.1 Remote Allocation is Secure

To prove remote allocation is secure, we refer to the address mapping enhancement in

Figure 28 in Section 4.4.2.1 The key observation is that the added address mapping is outside

of the secure domain, that is, we utilize public knowledge to improve space utilization and

leak no secure information.

To utilize the space of dead blocks, AB-ORAM tracks the generation of dead blocks, early

reclaims dead blocks, queries the status of selected blocks, and shrinks/extends the S value

for the bottom tree levels. Tracking the generation of dead blocks leaks no secure information

72



as it is public knowledge — attackers, without performing AB-ORAM, can conduct the same

information collection, i.e., the blocks accessed by readPath become dead. We maintain a

queue for each level and enqueue/dequeue in cleartext. Given a dead block, it is well-known

if it is queued, or skipped as the queue is full. Collecting such information reveals no secure

information.

Reclaiming dead blocks leaks no secure information as, to reclaim dead blocks, we de-

queue them from DeadQ and exploit them as a buffer to store the data of corresponding

logical tree blocks. The mapping is known to the public. Such an extra mapping is secure

because if it is not, we can construct a simple attack to the baseline Ring ORAM. Concep-

tually, the decision on choosing a particular logical tree block from a bucket at readPath is

secure. The address mapping introduced in AB-ORAM does not change the above decision

and kicks in only when we know the address of a logical tree block.

Querying the status of data blocks is secure as the query is integrated with the metadata

access in the baseline. The metadata access is performed before each readPath and thus

AB-ORAM does not introduce extra protocol access steps.

In the same way that real and dummy blocks are indistinguishable in Ring ORAM, their

dead and reused versions are indistinguishable in AB-ORAM. Therefore, an attacker cannot

infer anything about a block being real or dummy by collecting a dictionary of all remote

mappings in AB-ORAM. Also, the temporal locality would not affect this matter either

because if it would, one could guess the type of the accessed block based on its location

along the path in Ring ORAM.

In summary, the remote allocation design in AB-ORAM is secure and leaks no secure

information.

4.5.2 Altering the S Value is Secure

According to the security analysis in the baseline Ring ORAM [58], the three types of

operations can be divided into two groups: (1) user-application-dependent readPath; (2)

maintenance-oriented earlyReshuffle, and evictPath. Ring ORAM ensures all readPath ac-

cesses are indistinguishable, while the knowledge about when to perform maintenance oper-

73



ations is well-known and leaks no secure information. We next prove that, by altering the S

value (in dead block reclaim and non-uniform S design), these operations remain secure.

For readPath, altering the S value has no impact on Ring ORAM mapping (i.e., cre-

ating/accessing PosMap entries). Consequently, all readPaths remain indistinguishable —

each of them initiates a metadata access and then fetches one block from each bucket along

the path. Each bucket contains at least one dummy slot to support one more readPath.

Therefore, no secure information leaks from collecting readPath operations.

For earlyReshuffle, it is public knowledge about when to be triggered on a particular

bucket. Altering S is advertised as cleartext dynamicS such that the same strategy is applied

to trigger earlyReshuffle, which leaks no secure information.

For evictPath, it is triggered at a fixed interval, i.e., once for every five readPath accesses

and uses the fixed reverse-lexicographic order, which leaks no secure information.

For the special case discussed in Section 4.4.3.1, i.e., when DeadQ is empty, we may skip

extending the S value, i.e., allocating Z = 5+5 = 10 entries instead of Z = 5+7 = 12 entries

for a bucket at the bottom level. This results in assigning dynamicS= 5 for this bucket. This

is secure as this is public knowledge, similar to assigning a cleartext S = 7 in the baseline.

The slight security difference here is, now an attacker guesses if any of the first 5 accesses

to a 10-entry bucket contains real data (instead of guessing from 7 accesses to a 12-entry

bucket). For the non-uniform S value design, the security indication is, assume we reduce

S to 3, an attacker guesses if any of the first 3 accesses to an 8-entry bucket contains real

data. Given this guess needs to be combined with all bucket accesses along the path, i.e.,

only one bucket returns the real data, this security difference is negligible as we demonstrate

empirically in the following experiment.

4.5.3 Empirical Security Analysis

We set up an experiment to demonstrate how AB-ORAM preserves the same security

guarantee as Ring ORAM. We simulate one billion traces of 17 benchmarks in this experi-

ment. All other configurations are listed in Section 4.6. We measured the success rate of an

attacker guessing the real block during readPath. The attacker guesses one block out of L

74



blocks randomly. Figure 30 indicates the success rate, i.e., the number of correct guesses by

the attacker over the total number of readPaths. On average, the baseline exhibits a success

rate of 0.041665, while for AB-ORAM, it is 0.041670. As shown in the figure, AB-ORAM

closely follows the baseline. As one would expect, the success rate for all applications is

around 0.041666 (= 1/24), which highlights that path accesses are indistinguishable in Ring

ORAM, which is preserved by AB-ORAM as well.

This result is expected because AB-ORAM does not alter the fundamental nature of the

readPath operation. Similar to the Ring ORAM baseline, where only one block is read per

readPath operation, in AB-ORAM, this principle persists. Out of the 24 accessed blocks,

only one block contains real data; the rest are dummy blocks. Regardless of the number of

reserved dummy blocks (i.e., the allocated S value) a bucket has, it must have at least one

reserved dummy block available per bucket along the path at the time of readPath. This

principle remains consistent in AB-ORAM as it does in Ring ORAM. As mentioned before,

the only slight difference is that the attacker is guessing from fewer accesses to a smaller

bucket size. Our empirical experiments confirm that this difference is negligible.

gc
c

m
cf

om
n

xa
l

x2
64 de

e
bw

a
lb
m w

rf
ca

m
im

a fo
t

ro
m

ca
c

le
e

na
b xz av

g
0.04140

0.04150

0.04160

0.04170
0.04166

S
u

c
c

e
s

s
 R

a
te

  Baseline     AB    

Figure 30: Empirical study on AB-ORAM security implication.

4.5.4 Correctness

Ring ORAM follows Path ORAM and fails if a data block is mapped to a path that

contains no dummy entry for the Z ′ portion. Given AB-ORAM does not change the Z ′

75



value for the ORAM tree, AB-ORAM can save the same number of data blocks in each

bucket. The address mapping from the user address to the tree path remains the same.

AB-ORAM fetches one real data block from one path, the same as the baseline. As such,

AB-ORAM introduces no correctness issue.

4.6 Experimental Methodology

To evaluate AB-ORAM, we used USIMM [11], a widely-adopted trace-driven cycle-

accurate DRAM simulator in the literature to evaluate ORAM schemes. Table 5 lists the

configuration details. We used the Pin tool [15] to collect traces from SPEC CPU2017 suite

[1]. We used traces with 40 million memory accesses from each benchmark. For each trace,

the first 38 million accesses were used to warm up the ORAM tree, and the last two million

were fed to USIMM for DRAM access simulation. While not reported, we ran longer traces

and the results remained stable. Table 6 lists the benchmarks and their LLC misses per kilo

instruction (MPKI) in the experiments.

We modeled a Ring ORAM tree with 24 levels, Z = 12, and Z ′ = 5, S = 7. We

integrated Bucket Compaction [7] in the baseline, as set Y = 4, Z = 8, Z ′ = 5, and S = 3,

i.e., the tree occupies (224 − 1)×8×64B = 8GB memory space. Following the prior work

[66, 81, 82, 49, 7, 56], the protected user data occupies around 50% of all Z ′ entries in

buckets, that is, 2(24−1)×5×50%×64B = 2.5GB. We adopted a tree cache that saves the top

10 levels on-chip.

We implement and evaluate the following schemes.

• Baseline: It implements Ring ORAM [58] and integrates Bucket Compaction [7], with

Y = 4, Z = 8, Z ′ = 5, and S = 3. Note, all other schemes are built on top of this.

• IR: It implements IR-ORAM utilization optimization IR-Alloc in [56]. It sets Z ′ = 4 for

levels in range [L10, L18], and Y = 3.

• DR (Dead Block Reclaim): It sets the bucket size to Z = 6 (Z ′ = 5, S = 1) for [L18, L23],

then extends S value by 2 via remote allocation.

• NS (Non-uniform S): It sets the bucket size to Z = 6 (Z ′ = 5, S = 1) for [L22, L23].

76



• AB: It combines DR and NS. It sets Z = 6 (Z ′ = 5, S = 1) for [L18, L20], and Z = 5

(Z ′ = 5, S = 0) for [L21, L23].

Table 5: System configuration for AB-ORAM evaluation.

Processor Configuration

Processor Fetch Width/ ROB Size 4 / 256
Memory Channels 4
DRAM Clk Frequency 800 MHz

L1 / L2 D-cache 4-way 64KB / 8-way 256KB
L3 cache (LLC) 16-way 2MB

ORAM Configuration

ORAM tree levels 24
Bucket size/ Block size 12 / 64B
Stash entries 300
Dedicated tree top cache 256KB (4K entries)

On-chip PLB / PosMap 64KB / 512KB

Table 6: Evaluated benchmarks of SPEC suite.

Integer read write Float read write
Benchmark MPKI MPKI Benchmark MPKI MPKI

gcc 0.1 0.5 bwa 0.0 4.1
mcf 28.2 0.2 lbm 0 15.3
omn 0.3 0.06 wrf 0.1 1.0
xal 0.1 0.2 cam 0.0 7.1
x264 1.6 2.1 ima 0.2 2.1
dee 0.0 14.7 fot 0.03 1.56
xz 0 15.5 rom 0.0 13.7
lee 0.01 0.01 nab 0.1 0.2

cac 0.0 5.4

77



4.7 Experimental Results

In this section, we discuss the result of evaluated schemes described in Section 4.6.

4.7.1 Main Results of Space and Performance

Figure 31 presents the main result of our evaluation. Figure 31a reports the total space

consumption of different schemes normalized over Baseline. Figure 31b shows the space

utilization. Figure 31c compares the normalized execution time for different schemes, with

results normalized over Baseline.

From the figure, IR exhibits 4% performance slowdown because it uses Y = 3 to avoid a

large increase of background evictions, but smaller Y causes more reshuffles than Baseline,

which has Y = 4. It has a negligible impact on space demand as it only shrinks the middle

levels of the ORAM tree. DR lowers the space demand to 75% of Baseline, i.e., the state-of-

the-art Ring ORAM implementation. DR achieves 25% space reduction, leading to a space

utilization of 41.5%. We track the reclaimed blocks and observe that DR early reclaims

most of the dead blocks in the system. DR is 3% slower than Baseline, with the overhead

coming mainly from the enlarged buckets at the bottom levels. Reshuffling a bucket with

the extended S value is more expensive than doing an original bucket. NS reduces the space

demand of Baseline by 19% with comparable execution time. NS increases the number of

earlyReshuffles but reduces the cost of evictPath. When combining DR and NS, AB-ORAM

achieves 36% space reduction over Baseline while having around 4% performance overhead.

The combined scheme achieves further space savings over DR and NS, indicating DR and NS

are designs that improve space utilization from different directions. AB improves the space

utilization of Baseline from 31.2% to 48.5% which is very close to 50%.

Note that the bucket size reduction in IR-ORAM originally was proposed upon Path

ORAM, and in that setting, it benefits the performance. Because bucket size reduction is

more significant in Path ORAM as it has a much smaller bucket size (Z=4). In addition, IR

78



in the presence of the bucket compaction optimization in Ring ORAM incurs more dummy

accesses due to stash overflow.

Baseline IR NS DR AB
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
z
e

d
 S

p
a

c
e

36% 
25% 19% 

(a) Space reduction.

Baseline IR NS DR AB
0.0

0.1

0.2

0.3

0.4

0.5

41.5%

48.5%

38.5%

31.3%

S
p

a
c

e
 U

ti
li

z
a

ti
o

n

31.2%

(b) Space utilization.

gcc mcf omn xal x264 dee bwa lbm wrf cam ima fot rom cac lee nab xz avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

readPath

earlyReshuffle

N
o

r
m

a
li

z
e

d
 E

x
e

 T
im

e
 

 Baseline evictPath IR  NS (Non-uniform S)  DR (Dead Block Reclaim)  AB (NS +DR)

(c) Performance overhead with the breakdown of operations.

Figure 31: Space saving and performance overhead comparison of different schemes.

Figure 32 reports the bandwidth impact of our approach. From the figure, the extra

bandwidth demand is negligible. On average, AB increases the bandwidth usage by 1%.

4.7.2 Bucket Reshuffle Impact

Figure 33 compares the number of reshuffles across the different levels for different

schemes. DR has the closest number of reshuffles compared to Baseline due to S exten-

sion. NS increases the number of reshuffles for [L22, L23] where the S value is reduced by 2.

AB compared to NS has more reshuffles for L21 and fewer reshuffles for L22 and L23. This is

because we use L3-S1 in AB that shrinks S by 1 for [L21, L23].

79



gc
c

m
cf

om
n

xa
l

x2
64 de

e
bw

a
lb
m w

rf
ca

m
im

a fo
t

ro
m

av
g

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
r
m

a
li
z
e
d

 B
W

 NS      DR      AB

Figure 32: Bandwidth impact of AB-ORAM.

10 15 20 25
0

2M

4M

6M

8M

10M

#
 B

u
c

k
e

t 
R

e
s

h
u

ff
le

Level

 AB

 DR

 NS

 Baseline

Figure 33: Comparing number of bucket reshuffles across the levels.

80



4.7.3 DR Sensitivity Analysis

Figure 34 denotes the result of a sensitivity analysis of DR scheme across the level choice.

DR-L18 in Figure 34 is the same as DR in Figure 31. Top levels are less desirable for remote

allocation due to their low contribution to space demand. For instance, the top 17 levels

account for less than 1% of the space, while their reshuffle number contributes equally to

performance as other levels.

gc
c

m
cf

om
n

xa
l

x2
64 de

e
bw

a
lb
m w

rf
ca

m
im

a fo
t

ro
m

av
g

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
a

li
z
e

d
 E

x
e

 T
im

e

 DR-L10    DR-L15    DR-L18    DR-L20    DR-L22

Normalized Space Demand

DR-L10 DR-L15 DR-L18 DR-L20 DR-L22

50.00% 50.03% 50.26% 51.04% 54.16%

Figure 34: Sensitivity analysis of DR to the number of levels.

4.7.4 Dead Block Lifetime Analysis

We studied the lifetime of dead blocks. A dead block’s lifetime is defined as how long it

has been invalid. In Figure 35 the X-axis indicates the tree levels while the Y-axis indicates

the lifetime of dead blocks in terms of the number of online accesses. We report the minimum,

average, and maximum lifetime of all dead blocks at each level. The three lines are the

average of all benchmarks.

From the figure, the dead blocks from buckets above level 18 (i.e., closer to the root)

tend to have a lifetime close to zero, indicating most of these dead blocks get reclaimed in a

very short period of time. However, for dead blocks close to the leaves, the average lifetime

is large, indicating that dead blocks at these levels tend to be invalid for a long duration.

81



0 5 10 15 20
0

5M

10M

15M

20M

25M

30M

35M

40M

45M

50M

L
if

e
ti

m
e

Level

 max

 avg

 min

Figure 35: Dead blocks lifetime across ORAM tree levels.

4.7.5 NS Design Exploration

To determine the settings for NS, we studied different configurations and summarized the

results in Figure 36. In this figure, Ly-Sx means that, for the last y levels, NS shrinks the S

value by x. From the figure, an aggressive configuration, e.g., L3-S3, has large performance

degradation. Note, it differs from Figure 27 because CB is the baseline here. We therefore

chose L2-S2 for NS and L3-S1 for DS+NS, i.e., AB.

4.7.6 Remote Allocation Effectiveness

Figure 37 indicates the ratio of extended S values over the total number of bucket

allocations. As shown in Figure 26, there are abundant dead blocks available at each level.

Therefore, DR is able to extend almost all of the bucket allocations after gathering enough

dead blocks in DeadQ. In contrast, when NS is also enabled, there are fewer dead blocks

available at a time. Thus, AB has a lower extending ratio of 74%. Note, this ratio remains the

82



gc
c

m
cf

om
n

xa
l

x2
64 de

e
bw

a
lb
m w

rf
ca

m
im

a fo
t

ro
m

av
g

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
rm

a
li
z
e
d

 E
x
e
 T

im
e

 L3-S1    L3-S2    L3-S3    L2-S1    L2-S2    L2-S3

Normalized Space Demand

L3-S1 L3-S2 L3-S3 L2-S1 L2-S2 L2-S3

59.4% 52.1% 44.8% 60.4% 54.2% 48.0%

Figure 36: Design exploration of NS.

same across different applications as the dead block availability is not application dependant.

gc
c

m
cf

om
n

xa
l

x2
64 de

e
bw

a
lb
m w

rf
ca

m
im

a fo
t

ro
m

av
g

0.0

0.2

0.4

0.6

0.8

1.0

1.2

%
 o

f 
E

x
te

n
d

e
d

 S

 DR           AB

Figure 37: AB-ORAM capability for extending the S value.

83



4.7.7 Generalizability Over Different Applications

To assess the generalizability, we repeat the experiment with applications from another

benchmark suite; PARSEC [6, 11]. Figure 38 reports the space and performance results.

Our space saving remains the same as it is not application dependent. NS has a similar

execution time as Baseline. DR and AB, on average, incur 3% and 4% performance overheads,

respectively.

black comm1 comm2 face freq stream avg
0.0

0.4

0.8

1.2

N
o

r
m

a
li
z
e

d
 E

x
e

 T
im

e  NS     DR     AB

NS DR AB

Space Reduction 19% 25% 36%

Space Utilization 38.5% 41.5% 48.5%

Figure 38: Generalizability analysis of AB-ORAM.

4.7.8 Storage Overhead

The remote allocation incurs two types of storage overhead – one is the DeadQ for

tracking dead blocks, and the other is extra metadata for each bucket. The former is on-chip

while the latter demands extra space in the main memory.

On-chip Overhead. Given we track dead blocks for 6 levels, and DeadQs are empirically

set to have 1000 entries, the on-chip space is 21KB, which is small for modern processors.

Memory Overhead. For Ring ORAM, the bucket metadata takes 33B that fits into

a block (i.e. 64B). To avoid incurring any performance penalty during the metadata access

84



phase we keep the extra added metadata by AB-ORAM less than a block size (33B + 28B)

by setting R = 6 in Table 3.

4.7.9 Conclusion

In this chapter, we propose AB-ORAM to address the space inefficiency of Ring ORAM.

AB-ORAM reduces the space demand by reclaiming the dead blocks space via remote al-

location. It furthers the space reduction by setting a non-uniform bucket size across the

tree levels. It shrinks the buckets close to the leaves. AB-ORAM is orthogonal to the latest

optimization of Ring ORAM and effectively lowers the overall space demand. On average,

AB-ORAM achieves 36% space reduction over the state-of-the-art while introducing very

low performance overhead.

85



5.0 EP-ORAM: Efficient NVM-Friendly Path Eviction for Ring ORAM in

Hybrid Memory

5.1 DRAM Saving Overview

Among recent ORAM schemes [66, 58] that successfully reduced the protocol overhead

to O(logN), where N is the number of protected data blocks, Ring ORAM [58] is a promising

design. While its overall overhead remains O(logN), Ring ORAM achieves O(1) overhead

for online accesses, i.e., the overhead to service user memory requests. Thus, Ring ORAM

services user requests faster and improves the program performance, e.g., 2.7× improvement

over Path ORAM [66]. The protocol maintenance operations are expensive but they are not

always on the critical path.

However, Ring ORAM faces one major limitation, i.e., its low memory utilization. For

a typical setting, the required DRAM space is 4.8× of the protected data [58]. Ring ORAM

organizes the data blocks in a tree structure: each tree node, referred to as a bucket, consists

of Z slots each of which can save one data block or dummy block. The low memory utilization

comes from saving two types of dummy blocks. (1) When servicing a user memory request,

Ring ORAM identifies the target tree path and fetches one block from each bucket along the

path. Ring ORAM reserves S slots per bucket holding dummy data so that a bucket can

service up to S accesses without reshuffling. (2) A data block, after its access, is randomly

mapped to a different tree path. To prevent mapping to a tree path that has no empty slot,

Ring ORAM doubles the number of memory slots that can hold user data. Therefore, on

average, a tree bucket can hold (Z-S)/2 user data blocks. For a typical setting Z=12, S=7,

the DRAM memory requirement of Ring ORAM is 4.8× of the protected user data.

To alleviate the low memory utilization in Ring ORAM, Cao et al. [7] proposed to shrink

the bucket size such that the S dummy slots overlap with the slots that can save user data,

which reduces the DRAM space by 34%. AB-ORAM proposed to exploit the dead blocks

in the ORAM tree, which reduces the DRAM space by 22% [54]. Unfortunately, even with

these designs, the DRAM space requirement remains high.

86



With the fast advances of NVM (non-volatile memory) technologies, e.g., ReRAM (Re-

sistive Memory) [76] and STT-RAM (Spin-Transfer Torque Memory) [13], an alternative

strategy to address the high DRAM space demand is to use NVM. In particular, for a

DRAM/NVM hybrid memory system, if allocating the last two levels of the ORAM tree in

NVM and the rest of the levels in DRAM, the required DRAM space can be reduced by

75%. However, NVM often suffers from large memory access latency, allocating too many

levels, e.g., six levels, in NVM [32] can lead to 70% performance degradation. Given the

performance of Ring ORAM is already 2.2× slower than the no-ORAM implementation, the

large performance degradation makes an aggressive hybrid design less appealing.

In this chapter, we study the trade-offs in DRAM/NVM hybrid design as well as among

the Ring ORAM operations. By exploiting the design space exposed by these trade-offs,

we propose EP-ORAM, an efficient and NVM-friendly path eviction scheme to mitigate the

high DRAM demand in Ring ORAM. In the following, we summarize our contributions.

• We study the interactions among different Ring ORAM operations. In particular, Evict-

Path (the operation to reshuffle tree paths) determines the stash size, the frequency of

bucket level reshuffles, and the number of memory writes. We further identify the under-

utilized middle levels of Ring ORAM. It exposes the opportunity to reduce the overhead

of maintenance operations in Ring ORAM, in particular, the stash size.

• We propose EP-ORAM to exploit the design space exposed by our studies. EP-ORAM

carefully partitions the ORAM tree between DRAM and NVM and shortens the path

length during EvictPath operation, which not only reduces the number of NVM writes

but also speeds up the operation.

• We evaluate the proposed design. Our experimental results show that, under the design

constraints of no security compromise and similar performance as the baseline that saves

two bottom levels in NVM, EP-ORAM helps to save three levels in NVM, achieving 50%

DRAM space reduction. In addition, EP-ORAM reduces the NVM writes by 15%.

87



5.2 EP-ORAM

In this section, we first discuss our key observations and the design space challenges. We

then elaborate on the EP-ORAM scheme to address them.

5.2.1 Trade-offs of Adopting ORAM in DRAM/NVM Memory

As explained in Section 2.3.3, the ORAM tree is a full binary tree so its capacity grows

exponentially. In this tree, the capacity of the last level is equal to the capacity of all the prior

levels. In other words, if we save the last two levels of the ORAM tree in NVM, we can save

75% of DRAM space. NVM often suffers from large memory access latency, allocating too

many levels, e.g., six levels, in NVM [32] can lead to 70% performance degradation. Given

the performance of Ring ORAM is already 2.2× slower than the no-ORAM implementation,

the large performance degradation makes an aggressive hybrid design less appealing.

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6

Slo
wd

ow
n

 H y b r i d - N V M 4      H y b r i d - N V M 3      H y b r i d - N V M 2

Figure 39: Slowdown of Ring ORAM in hybrid memory compared to DRAM (Hybrid-NVMx

indicates saving x bottom levels in NVM).

Assume upgrading a 4-channel DRAM to a DRAM/NVM hybrid system, we reserve one

memory channel for NVM traffic. Given NVM accesses are slower than DRAM ones, we

expect to experience a modest performance slowdown in such system. Figure 39 shows the

slowdown of ORAM on different hybrid configurations over the DRAM-only baseline. On av-

erage, Hybrid-NVM4 incurs 1.35× slowdown. Whereas, Hybrid-NVM3 and Hybrid-NVM2,

88



on average, incur 1.19× and 1.10× slowdown respectively. If we bound the tolerable perfor-

mance degradation to 10%, Hybrid-NVM2 is the only configuration that has an acceptable

performance.

Another obstacle to adopting ORAM in a hybrid setting is the NVM writes imposed

by the ORAM protocol. In a non-secure baseline each user memory request incurs at most

one NVM write access. However, with ORAM, many more NVM writes are incurred per

user program memory request. We studied the average number of NVM writes per user

memory request for ORAM on different hybrid settings. Our experimental results showed

that Hybrid-NVM4, Hybrid-NVM3, and Hybrid-NVM2, on average, incur 17.7×, 13.3×, and

8.8× NVM writes per user request, respectively. While NVM write endurance has improved

significantly in recent years, for example, ReRAM has 109 write endurance, i.e., 10× better

than that of PCM [77]. However, more than one order of magnitude NVM write increase

could still be a big concern for the hybrid memory system.

In summary, modest performance degradation and modest NVM writes may be tol-

erable for a hybrid memory system. As such, we set 10% performance degradation and

10× NVM write increase as the design constraints. From the above discussion, We choose

Hybrid-NVM2 as the baseline for comparison, i.e., saving the last two levels of the ORAM

tree in NVM.

5.2.2 Trade-offs among Ring ORAM Operations

The three types of Ring ORAM maintenance operations help to tune the protocol to run

smoothly. In particular, EvictPath flushes the blocks in the stash and resets the counters

along the path. The frequency of EvictPath plays a key role in the design.

If we execute EvictPath less frequently, we expect to see more blocks accumulate in

the stash and the counters of more buckets reach S, which triggers more EarlyReshuffle

operations. However, EarlyReshuffle also flushes blocks from stash, though less effectively.

If we execute EarlyReshuffle more frequently, we accordingly have more opportunities to

flush the blocks in the stash.

BackgroundEvict serves as the last mechanism to ensure protocol correctness though it

89



tends to introduce larger overhead. While we target minimizing the number of BackgroundE-

vict, the existence of BackgroundEvict operation exposes a large design space that we can

explore across different Ring ORAM maintenance operations.

5.2.3 Under-utilized Middle Levels in Ring ORAM Tree

As mentioned in Section 2.3.3, on average, half of Z ′ entries in one bucket can hold real

data, and the rest is filled by dummy blocks to ensure correctness. However, for one bucket

at a given time, it may contain zero to Z ′ real block.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 40 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ut
iliz

ati
on

L e v e l
Figure 40: Bucket utilization across Ring ORAM tree levels (Utilization=1.0 means saving

Z ′ blocks in one bucket).

We conducted an experiment to measure the average bucket utilization across different

tree levels and reported the results in Figure 40. From the figure, we found that the bottom

levels are highly utilized because they constitute the majority of the capacity. The top

levels also have high utilization because they have high concentration of path overlaps. For

example, a block in the stash can be written back to the root regardless of its path mapping

90



(because all paths overlap at the root). As we move from the root to the middle levels, the

utilization drops. Saving more blocks in these levels would be beneficial.

5.2.4 The EP-ORAM Design

To exploit the observations that we made in the preceding sections, we propose EP-

ORAM, as shown in Figure 41. EP-ORAM consists of two key parameters (k, h), where k

indicates the number of bottom levels to be saved in NVM; and h indicates the path length

that EvictPath is to reshuffle. (0, 24) is the all-DRAM Ring ORAM implementation while

(2, 24) is the baseline that saves the two bottom levels of the ORAM tree in NVM. Here,

the ORAM tree has 24 levels, indicating it has 12 GB memory space, i.e., it protects 2.5 GB

of user data.

By choosing h < 24, EvictPath exhibits two types of path reshuffles. They differ by the

number of buckets to be read, re-encrypted, and written back.

• Full Path: This is the default EvictPath operation in Ring ORAM. It reads all buckets

along one tree path, i.e., L×Z ′ blocks, flushes the stash blocks if possible, and re-encrypts

and writes L × Z back to the path. All bucket counters along the path are reset after

this operation.

• Short Path: This is similar to full path but only applies to the top h levels. That is,

the buckets in top h levels are read, re-encrypted, and written back. The last L−h levels

are left untouched.

The k and h values. For a DRAM/NVM hybrid system, k and h are two independent

meta parameters. That is, it is possible to partially reshuffle a short path that consists of

only DRAM levels, or be extended to the NVM level. On the one hand, by having the short

path consisting of only DRAM levels, the partial reshuffle is fast and incurs zero NVM writes.

However, for a DRAM/NVM hybrid system that has an independent memory channel for

NVM, the NVM memory channel stays idle during the long EvictPath, which wastes the

memory parallelism that can be potentially exploited to improve the effectiveness of the

design. On the other hand, extending the short path to the NVM level incurs more NVM

writes. It could become a major concern if the number of NVM write is too high.

91



h 
Levels

. . .

. . .

. . .

. . . . . .

DRAM

NVM

. . .

Full PathShort Path

k 
Levels

L - k 
Levels

m short paths n full paths

EvictPath Timeline

Figure 41: An overview of the EP-ORAM design in hybrid memory system.

92



Short/Full path pattern. There are two direct impacts of adopting short path Evict-

Path: (1) The buckets from bottom L− h levels are left untouched and thus their counters

are not reset. There is an increasing possibility of triggering EarlyReshuffle operations. (2)

The blocks in the stash that may be flushed to the bottom levels can now be flushed to

L − h and above levels. This effectively increases the utilization of these levels. Due to

their limited sizes, there is a possibility the blocks may not be flushed and thus stay in

the stash longer. An overflow of the stash may trigger BackgroundEvict and degrades the

overall performance. For this purpose, we propose to conduct m short path EvictPath and

then n full path EvictPath and repeat continuously, as shown in Figure 41. Note, there are

five ReadPath operations between every two EvictPath invocations, the same as the baseline

Ring ORAM.

To ensure the same security protection as that of the baseline Ring ORAM implemen-

tation, the invocation of short path EvictPath cannot be on-demand. That is, we need to

statically decide a fixed pattern and apply it to all benchmarks.

Intuitively, the bigger the m value is, the more we reduce the number of NVM accesses.

However, a big m value leads to a higher chance of increased space utilization of middle levels

and possible stash overflow. We will study these parameters in the experiment section.

5.2.5 Security Analysis

In this section, we discuss how EP-ORAM preserves the same security guarantee as Ring

ORAM. First we show the partitioning of the ORAM tree in DRAM/NVM is secure. Then,

we show different path length EvictPath scheduling is secure.

In all tree-based ORAMs, the security guarantee is that path accesses are indistinguish-

able so that an attacker cannot infer any information about the user program requests.

EP-ORAM does not affect the online access i.e. ReadPath operation so these path accesses

remain indistinguishable the same way they were in Ring ORAM.

Regarding EvictPath operation, path lengths of evicted paths are changed in EP-ORAM

but they follow a fixed pattern. Note that in Ring ORAM EvictPath operations are statically

scheduled in a reverse-lexicographic order. Therefore, what path is going to be evicted next

93



is public information. In the same manner, in EP-ORAM, it is public information what

paths are going to be accessed in full or short length. This pattern is fixed during the

execution and remains the same for all programs. Therefore, EP-ORAM does not leak any

extra information to the attacker.

EarlyReshuffle activation is also public knowledge. Any bucket that is accessed S times

is going to be reshuffled. EP-ORAM does not change EarlyReshuffle operation and thus

leaks no extra information.

Naturally with the reduced number of EvictPath on bucket of bottom levels the number

of EarlyReshuffle they get may increase. Nevertheless, this does not disclose any information

regarding the user program since the number that a bucket is reshuffles is already known by

public in Ring ORAM baseline.

While EP-ORAM potentially increases the utilization in the middle tree levels, the change

of the overall utilization is known but the utilization for a given bucket, i.e., how many real

data blocks saved in this bucket, remains unknown to the attackers. From what an attacker

can observe from the outside, all blocks in a 12-entry bucket remains indistinguishable.

The invocations of the BackgroundEvict operation do not incur any security issues be-

cause, similar to the Ring ORAM baseline, BackgroundEvict is indistinguishable from nor-

mal accesses from the perspective of an outside observer. This indistinguishability persists

in EP-ORAM as well; EP-ORAM does not alter how this operation is conducted. The only

difference between the baseline and EP-ORAM is that EP-ORAM may experience more

BackgroundEvict invocations. While this increase can have adverse effects on performance

and marginally diminish the performance improvements, it does not compromise security.

This is because, like in the baseline, the BackgroundEvict operation remains indistinguishable

from normal user access. Therefore, the potential increase in the number of BackgroundEvict

operations does not disclose any information.

In summary, EP-ORAM preserves the security guarantee of Ring ORAM.

94



5.3 Evaluation

We used trace-based simulation to evaluate EP-ORAM, similar to those in the literature

[72, 7]. We used the Pin tool [15] for collecting traces from SPEC CPU2017 [1]. For each

benchmark, we gathered 40 million memory access traces after skipping the warm-up phase.

We ran each trace repeatedly to form a 400 million trace to place the ORAM tree into a

stable state. We fed the last million accesses to USIMM [11] for DRAM access simulation.

We modeled a 4-issue OoO (out-of-order) 3.2GHz processor with 160 ROB entries; a 4-

channel memory with one channel is dedicated to NVM. We adopted ReRAM as the NVM

and added a fixed latency of tWR = 200ns derived from [77] to simulate NVM accesses in

USIMM. Table 7 lists the rest of the system configurations.

Table 7: System configuration for EP-ORAM evaluation.

ORAM Configuration Processor Configuration

ORAM tree 24 levels L1 D-cache 2-way 256 KB
Tree top cache 10 levels L2 (LLC) 8-way 2 MB
Block size 64B Mem channels 3 DRAM, 1 NVM
Stash entries 300 NVM ReRAM (109 writes)

Following the typical setting [58, 54], we modeled a 24-level Ring ORAM tree with

Z=12, and Z ′=5, S=7. Given that each block is a 64B, the total ORAM tree size is

(224 − 1)×12×64B = 12 GB. Only 50% of all Z ′ entries contain user data. Thus, the

protected user space is 2.5 GB. We cached the top 10 levels of the tree on-chip. We evaluated

the following schemes.

• All-DRAM: it implements Ring ORAM with all tree levels being stored in DRAM.

• Hybrid-NVM2: it implements Ring ORAM with 2 levels in NVM and the rest of the

levels in DRAM.

• EP-ORAM: it implements Ring ORAM and adopts EP-ORAM with k=3, and h=21.

The short/full path pattern is that it uses m = ∞, and n=0.

95



5.3.1 DRAM Space, NVM Traffic and Performance Analysis

Figure 42 compares the DRAM space demand for different schemes. From the figure,

EP-ORAM reduces DRAM demand to only 1.5 GB, exhibiting 50% and 87.5% reductions

over Hybrid-NVM2 and All-DRAM, respectively. This greatly alleviates the DRAM space

demand in Ring ORAM designs.

A l l - D R A M H y b r i d - N V M 2 E P - O R A M0
2 G
4 G
6 G
8 G

1 0 G
1 2 G
1 4 G

1 . 5  G B
3  G B

DR
AM

 Sp
ac

e (
GB

) 1 2  G B

Figure 42: DRAM space demand of different schemes.

EP-ORAM achieves large DRAM savings under the design constraints in Section 5.2.1,

i.e., 10% performance slowdown over All-DRAM, and 10× user memory requests. Figure

43 reports the number of NVM writes in EP-ORAM with the result being normalized over

Hybrid-NVM2. On average, EP-ORAM reduces the NVM write traffic by 15%. This reduc-

tion comes mainly from that short path EvictPaths generate no NVM writes. However, the

number of EarlyReshuffles for buckets in NVM increases as bucket counters are not frequently

reset. The reduction over-weighs the increase when k=3. The number of NVM writes in

EP-ORAM is 7.7× user memory requests. Figure 44 reports the slowdown of Hybrid-NVM2

and EP-ORAM over All-DRAM baseline. On average, Hybrid-NVM2 and EP-ORAM incur

10% and 8% slowdowns over All-DRAM.

96



g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

No
rm

ali
ze

d N
VM

 W
rite

s

Figure 43: NVM writes reduction of EP-ORAM compared to Hybrid-NVM2.

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

Slo
wd

ow
n

 H y b r i d - N V M 2      E P - O R A M

Figure 44: Performance comparison of EP-ORAM and Hybrid-NVM2.

97



5.3.2 EP-ORAM Design Exploration

In this section, we study how different design choices affect EP-ORAM. Figure 45 com-

pares the number of NVM writes using different m and n values, with the result being nor-

malized over Hybrid-NVM3 (i.e., saving the bottom 3 levels in NVM, and no EP-ORAM).

The shaded portion of each bar indicates the amount of writes from EvictPath while the rest

comes from EarlyReshuffle. For each configuration mAnB indicates m=A, and n=B. From

the figure, with increasing m values, the number of NVM writes from EvictPath decreases

whereas that from EarlyReshuffle increases. On average, the total number of NVM writes

decreases as we enlarge m value. In particular, m∞n0 reduces the NVM writes to 58% of

those in Hybrid-NVM3. Figure 46 compares the execution time of different configurations of

EP-ORAM with the result being normalized over Hybrid-NVM3. From the figure, m∞n0

performs the best and reduces the execution time by 10%.

However, we observed that lbm has more NVM writes and larger slowdown atm∞n0 over

those at m50n1. This is due to more invocations of expensive BackgroundEvict operations.

The k, h parameters in EP-ORAM design are independent. Figure 47 compares the

following configurations: Hybrid-NVM4 and EP-ORAM with k=4, h=21. Hybrid-NVM4

incurs 35% slowdown compared to All-DRAM. EP-ORAM reduces this degradation to 11%

on average. While it is slightly over our design constraint (10% performance degradation),

it reduces the DRAM space by 93.75% over All-DRAM, or 768MB rather than 12GB in

All-DRAM.

5.3.3 Utilization Analysis

To study the impact of EP-ORAM on bucket utilization, we repeated the experiment

in Figure 40 with EP-ORAM. Figure 48 summarizes the results. From the figure, EP-

ORAM makes better use of middle levels. There is a spike at level 20 because Ring ORAM

aggressively writes blocks to the bottom level and levels 23 and 20 are the bottom levels for

the full path and short path EvictPath, respectively.

98



g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

No
rm

ali
ze

d N
VM

 W
rite

s

 m 2 n 1
E v i c t P a t h
E a r l y R e s h u f f l e m 1 0 n 1  m 5 0 n 1  �����

Figure 45: NVM writes reduction with different configurations of EP-ORAM compared to

Hybrid-NVM3.

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 7

0 . 8

0 . 9

1 . 0

No
rm

ali
ze

d E
xe

 Ti
me  m 2 n 1      m 1 0 n 1      m 5 0 n 1      �����

Figure 46: Performance improvement with different configurations of EP-ORAM compared

to Hybrid-NVM3.

99



g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6

Slo
wd

ow
n

 H y b r i d - N V M 4      E P - O R A M  ( k = 4 ,  h = 2 1 )

Figure 47: Comparing EP-ORAM and Hybrid-NVM4 slowdown.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 40 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

 E P - O R A M
 B a s e l i n e

Ut
iliz

ati
on

L e v e l
Figure 48: Bucket utilization of EP-ORAM and the baseline across levels.

100



5.3.4 Conclusion

In this chapter, we propose EP-ORAM [55] to enable efficient adoption of Ring ORAM

in DRAM/NVM hybrid memory. EP-ORAM partitions the ORAM tree such that bottom

levels are stored in NVM to save DRAM space. EP-ORAM identifies an opportunity in

existing trade-offs among Ring ORAM operations to shorten the EvictPath operation. EP-

ORAM achieves 50% DRAM space saving and reduces NVM writes by 15%.

101



6.0 Conclusions

6.1 Summary

In this dissertation, efforts were made to enhance the efficiency of secure memory with

ORAM from a system perspective, aiming to increase its appeal for widespread adoption. It

has been elaborated how encryption and authentication mechanisms alone are insufficient to

fully safeguard user privacy, particularly against access pattern attacks. Given that ORAM

serves as a robust method for concealing access patterns in scenarios where users delegate

their data and computation to untrusted memory, the emphasis was placed on enhancing its

efficiency in modern computers through the introduction of architectural techniques.

In this dissertation, I introduced three innovative approaches to optimize Oblivious RAM

(ORAM) implementations, each targeting distinct challenges associated with memory inten-

sity, space inefficiency, and hybrid memory adoption. First, IR-ORAM focuses on mitigating

the high memory intensity common in Path ORAM through a set of techniques including IR-

Alloc, IR-Stash, and IR-DWB, which collectively enhance performance by optimizing data

block access, buffering strategies, and converting dummy path accesses. Second, AB-ORAM

addresses the space inefficiency issue of Ring ORAM by reclaiming dead block space and

adopting a non-uniform bucket size strategy, thereby reducing overall space demand with

minimal performance impact. Finally, EP-ORAM facilitates the efficient adoption of Ring

ORAM in hybrid DRAM/NVM memory systems by partitioning the ORAM tree to leverage

NVM for bottom levels, saving DRAM space and reducing NVM writes. These approaches

not only achieve significant improvements in their respective areas but also maintain the

essential security protections and memory access obliviousness, demonstrating their effec-

tiveness and compatibility with existing ORAM optimizations.

102



6.2 Future Work

6.2.1 ORAM for Recommendation Systems

The threat of attacks on user privacy can be a major obstacle to outsourcing deep

learning-based recommendation systems to the cloud [84]. As discussed in 1.1, the access

pattern of embedding tables in deep learning-based recommendation systems is another in-

stance of an access pattern posing a threat to user privacy [31, 40, 53]. Given the prevalence

and increasing ubiquity of recommendation systems, protecting the access pattern in such

configurations is deemed necessary. However, incorporating ORAM for access pattern pro-

tection in recommendation systems introduces new challenges. This section elaborates on

these challenges, as well as the potentials that can be exploited to develop an embedding

table-tailored ORAM design.

Deep learning-based recommendation systems leverage neural network to provide users

with personalized recommendations based on their past behavior and preferences. They

have application in many domain such as online shopping, and video and music streaming

platforms. Deep learning takes both continuous and categorical features as their inputs.

Embedding tables are used to transform the categorical features to enhance their represen-

tation.

Embedding tables are a crucial component in deep learning-based recommendation sys-

tems. They are used to transform sparse categorical features, such as movie genres or user

IDs, into dense vector representations [16]. This transformation is essential because it allows

the model to capture the relationships between different categories. For instance, with a

movie recommendation system, each movie is associated with one or more genres, such as

Action, Comedy, Drama, Romance, and Thriller. In the context of embedding tables, each

of these genres would be mapped to a dense vector in a high-dimensional space. During the

training phase, the model learns the optimal embedding table entry for each category based

on the training data. The goal is to adjust the embedding table entry in such a way that the

model’s predictions align with the observed user-item interactions in the training data. For

instance, the system might learn that Action and Thriller are often liked by the same users,

103



so their embedding table entries would be close together in the embedding space, meaning

that the numerical content of their embedding table entries is similar, often measured using

metrics such as Euclidean distance. During the inference phase, the model uses the learned

embedding table to make predictions.

The size of the embedding table varies depending on the deep learning model. However,

they can grow very large, which is inevitable because a large embedding table can lead to

higher accuracy. Given that embedding tables can be very large, up to hundreds of gigabytes

[30, 50, 48, 85, 17, 80, 29], it is unrealistic to assume that all applications can benefit

from on-device machine learning inference. Therefore, it is natural for many applications to

take advantage of cloud inference to leverage their capacity to hold large models with large

embedding tables [40, 51]. With this comes the ever-growing concern of user privacy. As

studies have shown, the access pattern of an embedding table can reveal sensitive information

about the user. This is because the index of an embedding table entry discloses features

associated with a user.

ORAM, by design, requires at least twice the memory size it intends to protect. This

presents a significant challenge when implementing ORAM in settings with large embedding

tables due to the increased space demand. Additionally, machine learning inference is typi-

cally sensitive to latency. A recommendation system that takes an excessive amount of time

to provide recommendations would not be beneficial. Therefore, managing latency over-

head becomes another critical challenge when using ORAM to protect the access patterns

of embedding tables.

In the preliminary study of embedding tables, we observed a key difference from CPU

benchmark traces. Specifically, accesses to embedding tables exhibit minimal locality. Fur-

thermore, the sequence of accesses to the embedding table more closely resembles a random

trace. Our study found implications due to this matter. Due to the lack of locality, the PLB

hit rate is extremely low when embedding table traces are fed to the ORAM simulator. This

implies that the PosMap accesses cannot be skipped for most user block accesses. In addition

to the low PLB hit rate, the depth of the PosMap table lookup increases significantly with

a large embedding table. This is because there is limited on-chip space to accommodate

the last level of PosMap. Therefore, to cover the PosMap information of a large embedding

104



table, the number of levels in the hierarchy increases. For instance, a 40 GB embedding ta-

ble would require 4 levels of PosMap, with the last one being stored on-chip and occupying

32 KB. This means each memory access (out of the embedding table trace) will require 3

PosMap accesses followed by 1 data access, assuming there is no PLB.

We discovered that due to the random nature of embedding table traces, the PLB is not

effective at all. Our study revealed that PosMap accesses constitute 64.3% of all accesses on

average for embedding tables of the Taobao recommendation system [62]. If there is no PLB

in place, PosMap accesses would constitute 66.6% of all accesses. The key observation here

is that within the context of safeguarding embedding table accesses with ORAM, PosMap

accesses serve as the primary source of overhead. Thus, reducing PosMap accesses should

be prioritized, as they constitute the main source of overhead.

6.2.2 Merkle Tree for Position Map Access Reduction

In this section, an idea will be discussed to reduce PosMap accesses when protecting em-

bedding tables’ access pattern with ORAM in deep learning-based recommendation systems.

As discussed in Chapter 2, when the user data that we want to protect grows large, so

does the size of the PosMap table. Since the PosMap blocks hold secret data, i.e., block-

to-PathID mapping, it must also be protected with ORAM. Thus, the PosMap table is

constructed in a recursive manner until the last level PosMap fits on-chip.

Let us illustrate how this works through an example. Assuming we want to protect

32GB of data with a block size of 128B. Then we will need to protect 256 million (32GB /

128B) data blocks. Therefore, the first level of the PosMap table needs to keep the record

for 256 million block-to-PathID mappings. Given that the PathID takes 32 bits, i.e., 4B,

each block can hold 32 (128B / 4B) numbers of block-to-PathID mappings. Assuming our

on-chip budget is in the range of 32KB to 64KB, we will need 4 levels of PosMap tables.

The following indicates the size calculation of each level:

• PosMap-1: 32GB/32 = 1GB

• PosMap-2: 1GB/32 = 32MB

• PosMap-3: 32MB/32 = 1MB

105



• PosMap-4: 1MB/32 = 32KB

PosMap-4 will be stored on-chip, while the remaining levels will be stored in the ORAM

tree alongside the 32GB user data, as introduced in [21]. This means that without the

presence of a PLB for caching the PosMap blocks, we will need three path accesses to retrieve

the PathID of the block we want to access prior to the data path access, as demonstrated

in Figure 49. This means without a PLB, there are 4 path accesses required per user data

block request and 3 of them are PosMap accesses.

Figure 49: Timeline of path access in a large embedding setup with a 4-level PosMap table.

The idea is to redesign the PosMap structure in order to reduce the number of levels in the

PosMap table, thereby reducing the number of accesses required per user data request. To

achieve this reduction in levels within the PosMap, we must increase the number of block-

to-PathID mappings stored per 128B block. To do so, we propose employing the Merkle

Tree approach [60, 23] for constructing the PathIDs instead of storing them directly as 4B

numbers in the PosMap block. Thus, instead of saving the PathID directly, we generate the

PathID from a secure one-to-one mapping. Here is the formulation for the secure function:

106



PathID = secureFunc(Nonce,BlockIndex,BlockCtr)

In the function secureFunc, there are three inputs, each of which is outlined in the

following discussion. Figure 50 depicts the PosMap block layout in this scheme, where each

PosMap block consists of a 26-bit Nonce, similar to the concept of a major counter in the

Merkle tree, and 128 numbers of 10-bit BlockCtr, akin to the minor counters in the Merkle

tree implementation. Therefore, each PosMap block is able to retain the required information

to construct the PathID of 128 blocks. Note that the input BlockIndex in secureFunc is

implied through the location of the corresponding block’s BlockCtr in the PosMap block, as

illustrated in Figure 50.

All Nonces of all PosMap blocks are initialized with a random number, and all BlockCtrs

are initialized to zero. Whenever there is an access to a data block, its PathID is first

calculated through secureFunc, and then the corresponding BlockCtr is incremented. Once

any of the 128 BlockCtrs overflows, the Nonce should be incremented, and all BlockCtrs

in the PosMap block must be reset. Therefore, in that case, there will be an overhead of

updating the blocks’ PathID over the ORAM tree. However, given that in embedding tables

the access pattern is quite random, one could expect that the counter overflow is very rare.

Thus, the overall maintenance overhead of dealing with the overflow is extremely low.

The following discussion details the implementation of secureFunc. The first step is to

concatenate the two inputs: BlockIndex, and BlockCtr, and then XOR the result with Nonce.

However, it would not be secure to use the raw concatenation as the final PathID, simply

because then the consecutive PathIDs of a block would appear incremental. Note that each

BlockCtr is incremented after each PosMap access, and that is how a block is remapped to

a new PathID. Thus, in order to ensure the remapping is secure and consecutive PathIDs

appear non-incremental and rather random, we apply a secret encryption mapping to the

generated PathID from the concatenation. This encryption function is kept secret and resides

in the trusted base.

One minor detail is that the proposed layout for the PosMap block is slightly larger than

128B. However, this issue can be handled through block compression at the CPU side in

the trusted base. Compression is feasible, given that the majority of BlockCtrs in a given

107



Nonce
26 bits

BlockCtr-127
10 bits

BlockCtr-0
10 bits . . . 

128 
Block Counters

BlockIndex

Figure 50: The PosMap block layout with the Merkle tree PosMap scheme.

PosMap block are expected to have many zero bits due to the random access pattern of

embedding tables, i.e., the lack of locality.

Let us revisit the discussion regarding the calculation of PosMap levels for the proposed

scheme. Previously, we needed 4 levels of PosMap accesses. With this scheme, we now need

one less level because each PosMap block can hold the PathID of 128 blocks instead of 32.

Here is the PosMap size calculation for this scheme:

• PosMap-1: 32GB/128 = 256MB

• PosMap-2: 256MB/128 = 2MB

• PosMap-3: 2MB/128 = 16KB

With the proposed scheme, the PosMap access overhead will be reduced due to the fewer

number of PosMap levels. Previously, one user request could result in 4 path accesses ac-

cording to Figure 49, in the worst-case scenario where all PosMap accesses are PLB misses.

In contrast, with the Merkle PosMap scheme, the worst-case scenario will result in 3 path

accesses. This represents a 25% reduction in the number of path accesses. Figure 51 illus-

trates the preliminary result. From the figure, it can be observed that the total number of

memory accesses with the proposed scheme is reduced by 29% compared to the baseline.

108



The result indicates that the reduction in memory access overhead is 4% higher than the

expected potential (i.e. 25% reduction). Here is why: with the proposed scheme, not only

does the number of path accesses reduce in the worst-case scenario, but also the occurrence

of worst-case scenarios decreases because of an increase in PLB hit rate. That is expected

because with the proposed scheme, each PosMap block covers PathID for a wider range of

space. Thus, it is only expected that we observe a higher PLB hit rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Baseline Merkle PosMap

N
o

rm
al

iz
ed

 M
em

o
ry

 A
cc

e
ss

es
 #

29%

Figure 51: The total memory access reduction achieved with the Merkle PosMap scheme.

In this section, I introduced a Merkle tree-based PosMap construction scheme to reduce

the number of PosMap accesses for protecting large embedding tables in deep learning-based

recommendation systems with ORAM. The preliminary results have proven to be promising.

Therefore, there is potential for future work to follow this approach.

109



Bibliography

[1] SPEC CPU 2017 Benchmark Suite, 2017.

[2] Shaizeen Aga and Satish Narayanasamy. Invisimem: Smart memory defenses for
memory bus side channel. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, 2017.

[3] Kholoud Saad Al-Saleh and Abdelfettah Belghith. Radix path: A reduced bucket size
oram for secure cloud storage. IEEE Access, 2019.

[4] Amro Awad, Yipeng Wang, Deborah Shands, and Yan Solihin. Obfusmem: A low-
overhead access obfuscation for trusted memories. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture, 2017.

[5] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas.
Cacti 7: New tools for interconnect exploration in innovative off-chip memories. ACM
Transactions on Architecture and Code Optimization, 2017.

[6] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-
versity, 2011.

[7] Dingyuan Cao, Mingzhe Zhang, Hang Lu, Xiaochun Ye, Dongrui Fan, Yuezhi Che,
and Rujia Wang. Streamline ring oram accesses through spatial and temporal opti-
mization. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021.

[8] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse at-
tacks against searchable encryption. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’15, page 668–679, New
York, NY, USA, 2015. Association for Computing Machinery.

[9] Anrin Chakraborti, Adam J. Aviv, Seung Geol Choi, Travis Mayberry, Daniel S.
Roche, and Radu Sion. roram: Efficient range oram with o(log2 n) locality. Proceedings
2019 Network and Distributed System Security Symposium, 2019.

110



[10] Anrin Chakraborti and Radu Sion. Concuroram: High-throughput stateless parallel
multi-client oram. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2019.

[11] Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth H. Pugs-
ley, Aniruddha N. Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and Zeshan A.
Chishti. Usimm : the utah simulated memory module. 2012.

[12] Yuezhi Che, Yuan Hong, and Rujia Wang. Imbalance-aware scheduler for fast and
secure ring oram data retrieval. In 2019 IEEE 37th International Conference on
Computer Design (ICCD), 2019.

[13] E. Chen, D. Lottis, A. Driskill-Smith, D. Druist, V. Nikitin, S. Watts, X. Tang, and
D. Apalkov. Non-volatile spin-transfer torque ram (stt-ram). In 68th Device Research
Conference, 2010.

[14] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring oram: Efficient constant band-
width oblivious ram from (leveled) tfhe. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[15] Intel Corp. Pin - A Dynamic Binary Instrumentation Tool, 2012.

[16] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM Conference on Recommender Sys-
tems, RecSys ’16, page 191–198, New York, NY, USA, 2016. Association for Comput-
ing Machinery.

[17] Aditya Desai and Anshumali Shrivastava. The trade-offs of model size in large recom-
mendation models : 100gb to 10mb criteo-tb dlrm model. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems, volume 35, pages 33961–33972. Curran Associates, Inc., 2022.

[18] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi,
and Daniel Wichs. Onion oram: A constant bandwidth blowup oblivious ram. In
TCC, 2016.

[19] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham,
E. Roback, and James Dray. Advanced encryption standard (aes), 2001.

111



[20] Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. A secure processor
architecture for encrypted computation on untrusted programs. In Proceedings of the
Seventh ACM Workshop on Scalable Trusted Computing, STC ’12, page 3–8, New
York, NY, USA, 2012. Association for Computing Machinery.

[21] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas De-
vadas. Freecursive oram: [nearly] free recursion and integrity verification for position-
based oblivious ram. In Proceedings of the 20th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 2015.

[22] Christopher W. Fletchery, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan,
and Srinivas Devadas. Suppressing the oblivious ram timing channel while making in-
formation leakage and program efficiency trade-offs. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture, 2014.

[23] B. Gassend, G.E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and hash trees
for efficient memory integrity verification. In The Ninth International Symposium on
High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings., pages
295–306, 2003.

[24] Blaise Gassend, E Suh, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas.
Caches and merkle trees for efficient memory authentication. In Proceedings of 9th
International Symposium on High Performance Computer Architecture, 2003.

[25] Oded Goldreich. Towards a theory of software protection and simulation by oblivious
rams. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987.

[26] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43, 1996.

[27] Paul Grubbs, Marie-Sarah Lacharite, Brice Minaud, and Kenneth G. Paterson. Pump
up the volume: Practical database reconstruction from volume leakage on range
queries. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’18, page 315–331, New York, NY, USA, 2018. Association
for Computing Machinery.

[28] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Learn-
ing to reconstruct: Statistical learning theory and encrypted database attacks. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1067–1083, 2019.

112



[29] Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xiuqiang He, and Wenzhi Liu.
Scalefreectr: Mixcache-based distributed training system for ctr models with huge
embedding table. Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2021.

[30] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-
Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. Deeprecsys: a
system for optimizing end-to-end at-scale neural recommendation inference. In Pro-
ceedings of the ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture, ISCA ’20, page 982–995. IEEE Press, 2020.

[31] Hanieh Hashemi, Wenjie Xiong, Liu Ke, Kiwan Maeng, Murali Annavaram, G. Ed-
ward Suh, and Hsien-Hsin S. Lee. Private data leakage via exploiting access patterns
of sparse features in deep learning-based recommendation systems. In Workshop on
Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022, 2022.

[32] Wenpeng He, Fang Wang, and Dan Feng. H2oram: Low response latency optimized
oram for hybrid memory systems. In ICCD, 2020.

[33] John L Hennessy and David A Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 6th edition, 2019.

[34] Thang Hoang, Ceyhun D. Ozkaptan, Attila A. Yavuz, Jorge Guajardo, and Tam
Nguyen. S3oram: A computation-efficient and constant client bandwidth blowup oram
with shamir secret sharing. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[35] Intel. Intel Software Guard Extensions, 2014.

[36] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and mitigation. In Network
and Distributed System Security Symposium, 2012.

[37] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann, 2007.

[38] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks
on secure outsourced databases. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, page 1329–1340, New York,
NY, USA, 2016. Association for Computing Machinery.

113



[39] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
Data recovery on encrypted databases with k-nearest neighbor query leakage. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1033–1050, 2019.

[40] Maximilian Lam, Jeff Johnson, Wenjie Xiong, Kiwan Maeng, Udit Gupta, Yang Li,
Liangzhen Lai, Ilias Leontiadis, Minsoo Rhu, Hsien-Hsin S. Lee, Vijay Janapa Reddi,
Gu-Yeon Wei, David Brooks, and G. Edward Suh. Gpu-based private information
retrieval for on-device machine learning inference, 2023.

[41] Steven Lambregts, Huanhuan Chen, Jianting Ning, and Kaitai Liang. Val: Volume
and access pattern leakage-abuse attack with leaked documents. In Vijayalakshmi
Atluri, Roberto Di Pietro, Christian D. Jensen, and Weizhi Meng, editors, Computer
Security – ESORICS 2022, pages 653–676, Cham, 2022. Springer International Pub-
lishing.

[42] Hsien-Hsin S. Lee, Gray S. Tyson, and Matthew K. Farrens. Eager writeback- a tech-
nique for improving bandwidth utilization. In Proceedings 33rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2000.

[43] Gang Liu, Kenli Li, Zheng Xiao, and Rujia Wang. Ps-oram: Efficient crash consistency
support for oblivious ram on nvm. In ISCA, 2022.

[44] Liang Liu, Rujia Wang, Youtao Zhang, and Jun Yang. H-oram: A cacheable oram
interface for efficient 1/o accesses. In 2019 56th ACM/IEEE Design Automation
Conference, 2019.

[45] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Build-
ing customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, 2005.

[46] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a
secure processor. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, 2013.

[47] Sujaya Maiyya, Seif Ibrahim, Caitlin Scarberry, Divyakant Agrawal, Amr El Abbadi,
Huijia Lin, Stefano Tessaro, and Victor Zakhary. QuORAM: A Quorum-Replicated
fault tolerant ORAM datastore. In 31st USENIX Security Symposium (USENIX
Security 22), pages 3665–3682, Boston, MA, August 2022. USENIX Association.

114



[48] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang,
Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Serhat
Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie Wen,
Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna Dhulipala,
KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi Gangidi, Guo-
qiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnakumar Nair, Bharath
Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr Lapukhov, Maxim Nau-
mov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao. Software-
hardware co-design for fast and scalable training of deep learning recommendation
models. In Proceedings of the 49th Annual International Symposium on Computer
Architecture, ISCA ’22, page 993–1011, New York, NY, USA, 2022. Association for
Computing Machinery.

[49] Chandrasekhar Nagarajan, Ali Shafiee, Rajeev Balasubramonian, and Mohit Tiwari.
ρ: Relaxed hierarchical oram. In Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and Operating Systems, 2019.

[50] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii,
Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong,
and Misha Smelyanskiy. Deep learning recommendation model for personalization
and recommendation systems, 2019.

[51] G. Preethi, P. Venkata Krishna, Mohammad S. Obaidat, V. Saritha, and Sumanth
Yenduri. Application of deep learning to sentiment analysis for recommender system
on cloud. In 2017 International Conference on Computer, Information and Telecom-
munication Systems (CITS), pages 93–97, 2017.

[52] Rachit Rajat, Yongqin Wang, and Murali Annavaram. Pageoram: An efficient dram
page aware oram strategy. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 91–107, 2022.

[53] Rachit Rajat, Yongqin Wang, and Murali Annavaram. Laoram: A look ahead oram
architecture for training large embedding tables. In Proceedings of the 50th Annual
International Symposium on Computer Architecture, ISCA ’23, New York, NY, USA,
2023. Association for Computing Machinery.

115



[54] Mehrnoosh Raoufi, Jun Yang, Xulong Tang, and Youtao Zhang. AB-ORAM: Con-
structing adjustable buckets for space reduction in ring oram. In 2023 IEEE In-
ternational Symposium on High-Performance Computer Architecture (HPCA), pages
361–373, 2023.

[55] Mehrnoosh Raoufi, Jun Yang, Xulong Tang, and Youtao Zhang. EP-ORAM: Efficient
nvm-friendly path eviction for ring oram in hybrid memory. In 2023 60th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, 2023.

[56] Mehrnoosh Raoufi, Youtao Zhang, and Jun Yang. IR-ORAM: Path access type based
memory intensity reduction for path-oram. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2022.

[57] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van
Dijk, and Srinivas Devadas. Constants count: Practical improvements to oblivious
RAM. In 24th USENIX Security Symposium (USENIX Security 15), 2015.

[58] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
van Dijk, and Srinivas Devadas. Ring ORAM: closing the gap between small and large
client storage oblivious RAM. IACR Cryptol. ePrint Arch., 2014.

[59] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas
Devadas. Design space exploration and optimization of path oblivious ram in secure
processors. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, 2013.

[60] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using address
independent seed encryption and bonsai merkle trees to make secure processors os-
and performance-friendly. In 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), pages 183–196, 2007.

[61] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro. Taos-
tore: Overcoming asynchronicity in oblivious data storage. In 2016 IEEE Symposium
on Security and Privacy (SP), 2016.

[62] Pavan Sanagapati. Ad display/click data on taobao.com. https://www.kaggle.com/
datasets/pavansanagapati/ad-displayclick-data-on-taobaocom, 2024.

116

https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom


[63] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. Zerotrace : Oblivious
memory primitives from intel SGX. In 25th Annual Network and Distributed System
Security Symposium, 2018.

[64] Elaine Shi, T-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram with
o((logn)3) worst-case cost. IACR Cryptol. ePrint Arch., 2011:407, 2011.

[65] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage.
In 2013 IEEE Symposium on Security and Privacy, pages 253–267, 2013.

[66] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path oram: An extremely simple oblivious ram protocol.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013.

[67] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C. Hunter, and Lizy K. John.
The virtual write queue: coordinating dram and last-level cache policies. In Proceed-
ings of the 37th Annual International Symposium on Computer Architecture, ISCA
’10, page 72–82, New York, NY, USA, 2010. Association for Computing Machinery.

[68] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas De-
vadas. Aegis: Architecture for tamper-evident and tamper-resistant processing. In
Proceedings of the 17th Annual International Conference on Supercomputing, 2003.

[69] Jakub Szefer and Sebastian Biedermann. Towards fast hardware memory integrity
checking with skewed merkle trees. In Proceedings of the Third Workshop on Hardware
and Architectural Support for Security and Privacy, 2014.

[70] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. VAULT: reducing paging
overheads in SGX with efficient integrity verification structures. In Xipeng Shen,
James Tuck, Ricardo Bianchini, and Vivek Sarkar, editors, Proceedings of the 23rd
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2018.

[71] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. Architectural support for copy and tamper re-
sistant software. In Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2000.

117



[72] Rujia Wang, Youtao Zhang, and Jun Yang. Cooperative path-oram for effective
memory bandwidth sharing in server settings. In 2017 IEEE International Symposium
on High Performance Computer Architecture, 2017.

[73] Rujia Wang, Youtao Zhang, and Jun Yang. D-oram: Path-oram delegation for low
execution interference on cloud servers with untrusted memory. In 2018 IEEE Inter-
national Symposium on High Performance Computer Architecture, 2018.

[74] Zhe Wang, Samira M. Khan, and Daniel A. Jiménez. Improving writeback efficiency
with decoupled last-write prediction. In 2012 39th Annual International Symposium
on Computer Architecture (ISCA), 2012.

[75] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file sys-
tem. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, 2012.

[76] H.-S. Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu
Chen, Byoungil Lee, Frederick T. Chen, and Ming-Jinn Tsai. Metal–oxide rram.
Proceedings of the IEEE, 2012.

[77] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang,
Shimeng Yu, and Yuan Xie. Overcoming the challenges of crossbar resistive memory
architectures. In HPCA, 2015.

[78] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: De-
terministic side channels for untrusted operating systems. In 2015 IEEE Symposium
on Security and Privacy, 2015.

[79] Jun Yang, Youtao Zhang, and Lan Gao. Fast secure processor for inhibiting software
piracy and tampering. In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003.

[80] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing Liu. Tt-rec: Tensor train
compression for deep learning recommendation models. In A. Smola, A. Dimakis,
and I. Stoica, editors, Proceedings of Machine Learning and Systems, volume 3, pages
448–462, 2021.

[81] Xiangyao Yu, Syed Kamran Haider, Ling Ren, Christopher Fletcher, Albert Kwon,
Marten van Dijk, and Srinivas Devadas. Proram: Dynamic prefetcher for oblivious

118



ram. In Proceedings of the 42nd Annual International Symposium on Computer Ar-
chitecture, 2015.

[82] Xian Zhang, Guangyu Sun, Peichen Xie, Chao Zhang, Yannan Liu, Lingxiao Wei,
Qiang Xu, and Chun Jason Xue. Shadow block: Accelerating oram accesses with
data duplication. In 2018 51st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 961–973, 2018.

[83] Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang, Yun Liang, Tao Wang, Yiran
Chen, and Jia Di. Fork path: Improving efficiency of oram by removing redundant
memory accesses. In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture, 2015.

[84] Xiaoyu Zhang, Chao Chen, Yi Xie, Xiaofeng Chen, Jun Zhang, and Yang Xiang. A
survey on privacy inference attacks and defenses in cloud-based deep neural network.
Computer Standards & Interfaces, 83:103672, 2023.

[85] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. Deep interest network for click-through rate
prediction. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’18, page 1059–1068, New York, NY,
USA, 2018. Association for Computing Machinery.

[86] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide: An infrastructure for effi-
ciently protecting information leakage on the address bus. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2004.

[87] Yu Zou and Mingjie Lin. Fast: A frequency-aware skewed merkle tree for fpga-
secured embedded systems. In 2019 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2019.

119


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. System configuration for IR-ORAM evaluation.
	2. Evaluated benchmarks from SPEC and PARSEC suite.
	3. Organization of bucket metadata in Ring ORAM and AB-ORAM.
	4. Summary of the state-of-the-art ORAM implementations.
	5. System configuration for AB-ORAM evaluation.
	6. Evaluated benchmarks of SPEC suite.
	7. System configuration for EP-ORAM evaluation.

	List of Figures
	1. ORAM incurs a large performance degradation.
	2. Each user request is translated to multiple path accesses.
	3. ORAM's space demand significantly burdens the system.
	4. Contribution of each level to memory accesses and to the size of the ORAM tree.
	5. Overview of performance and space efficiency improvements.
	6. The threat model adopted in the dissertation. 
	7. An overview of Path ORAM (L=3, Z=4). 
	8. Ring ORAM tree organization (L=3, Z'=3, S=4, and Z=7). 
	9. Ring ORAM tree organization and operations with L=3. 
	10. The distribution of different path accesses. 
	11. rebut The space utilization at different tree levels. 
	12. rebut The space utilization behavior per benchmark; gcc (left), lbm (middle), and a random trace (right). 
	13. The migration behavior after block a leaves the stash.
	14. Nodes at top levels have high reuse possibility.
	15. The design of IR-Alloc scheme.
	16. Exploit IR-Stash to effectively cache large tree top.
	17. The design of IR-DWB scheme.
	18. rebut The performance comparison of different schemes.
	19. The performance comparison with LLC-D as baseline.
	20. rebut Design exploration of IR-Alloc scheme.
	21. rebut Level utilization with IR-Alloc.
	22. Comparing PosMap accesses with Baseline.
	23. Access type distribution in IR-DWB.
	24. The scalability analysis of IR-Alloc.
	25. Dead blocks over time for different benchmarks. 
	26. Dead blocks across the levels. 
	28. AB-ORAM adds one more level of address mapping in the insecure domain. 
	29. An overview of remote allocation in AB-ORAM. 
	30. mehEmpirical study on AB-ORAM security implication.
	31. mehSpace saving and performance overhead comparison of different schemes.
	32. mehBandwidth impact of AB-ORAM.
	33. mehComparing number of bucket reshuffles across the levels.
	34. mehSensitivity analysis of DR to the number of levels.
	35. Dead blocks lifetime across ORAM tree levels. 
	36. mehDesign exploration of NS.
	37. mehAB-ORAM capability for extending the S value.
	38. mehGeneralizability analysis of AB-ORAM. 
	39. Slowdown of Ring ORAM in hybrid memory compared to DRAM (Hybrid-NVMx indicates saving x bottom levels in NVM). 
	40. Bucket utilization across Ring ORAM tree levels (Utilization=1.0 means saving Z' blocks in one bucket). 
	41. An overview of the EP-ORAM design in hybrid memory system. 
	42. DRAM space demand of different schemes.
	43. NVM writes reduction of EP-ORAM compared to Hybrid-NVM2.
	44. Performance comparison of EP-ORAM and Hybrid-NVM2. 
	45. NVM writes reduction with different configurations of EP-ORAM compared to Hybrid-NVM3.
	46. Performance improvement with different configurations of EP-ORAM compared to Hybrid-NVM3.
	47. Comparing EP-ORAM and Hybrid-NVM4 slowdown.
	48. Bucket utilization of EP-ORAM and the baseline across levels.
	49. Timeline of path access in a large embedding setup with a 4-level PosMap table.
	50. The PosMap block layout with the Merkle tree PosMap scheme.
	51. The total memory access reduction achieved with the Merkle PosMap scheme.

	Preface
	1.0 Introduction
	1.1 The Case for Protecting Access Patterns
	1.2 ORAM Overhead and Challenges
	1.3 Contribution Overview

	2.0 Background
	2.1 Memory Security
	2.1.1 Memory Basics
	2.1.2 Security and Privacy

	2.2 ORAM Basics
	2.2.1 ORAM History
	2.2.2 Related Work
	2.2.3 Threat Model

	2.3 Path ORAM
	2.3.1 Operation Basics
	2.3.2 Key Enhancements
	2.3.3 Ring ORAM Optimization


	3.0 IR-ORAM: Path Access Type Based Memory Intensity Reduction for Path-ORAM
	3.1 Intensity Reduction Overview
	3.2 Motivation
	3.2.1 The Types of Path Accesses
	3.2.2 The Utilization of Tree Nodes
	3.2.3 The Block Migration Behavior

	3.3 The IR-ORAM Design
	3.3.1 An Overview
	3.3.2 IR-Alloc: a Utilization-aware Node Size Allocator for Reducing Intensity of PTp/PTd /PTm paths
	3.3.3 IR-Stash: a Double Indexed Stash Implementation for Reducing Intensity of PTp Paths 
	3.3.4 IR-DWB: Converting Dummy Path Accesses for Reducing Intensity of PTm paths
	3.3.5 Security and Correctness Analysis

	3.4 Experiment Methodology
	3.5 Experimental Results
	3.5.1 Performance Comparison
	3.5.2 IR-Alloc Overflow
	3.5.3 PosMap Reduction
	3.5.4 Dummy Path Accesses
	3.5.5 Scalability Analysis
	3.5.6 Overheads
	3.5.7 Conclusion


	4.0 AB-ORAM: Constructing Adjustable Buckets for Space Reduction in Ring ORAM
	4.1 Space Reduction Overview
	4.2 Ring ORAM Space Demand
	4.2.1 Ring ORAM with Bucket Compaction
	4.2.2 Broad Impact of Space Reduction

	4.3 orgMotivation
	4.3.1 Studying Dead Blocks
	4.3.2 Studying Space/Performance Trade-off

	4.4 The AB-ORAM Design
	4.4.1 Overview
	4.4.2 Remote Allocation
	4.4.2.1 One Extra Level of Address Mapping
	4.4.2.2 Tracking Dead Blocks
	4.4.2.3 Remote Allocation

	4.4.3 Altering the S Value for Space Savings
	4.4.3.1 Extending the S Value with Remote Allocation
	4.4.3.2 The Non-uniform S Value

	4.4.4 Comparison to the State-of-the-arts

	4.5 Security and Correctness
	4.5.1 Remote Allocation is Secure
	4.5.2 meh Altering the S Value is Secure
	4.5.3 meh Empirical Security Analysis
	4.5.4 Correctness

	4.6 Experimental Methodology
	4.7 Experimental Results
	4.7.1 mehMain Results of Space and Performance
	4.7.2 Bucket Reshuffle Impact
	4.7.3 DR Sensitivity Analysis
	4.7.4 Dead Block Lifetime Analysis
	4.7.5 NS Design Exploration
	4.7.6 Remote Allocation Effectiveness
	4.7.7 Generalizability Over Different Applications
	4.7.8 Storage Overhead
	4.7.9 Conclusion


	5.0 EP-ORAM: Efficient NVM-Friendly Path Eviction for Ring ORAM in Hybrid Memory
	5.1 DRAM Saving Overview
	5.2 EP-ORAM
	5.2.1 Trade-offs of Adopting ORAM in DRAM/NVM Memory
	5.2.2 Trade-offs among Ring ORAM Operations
	5.2.3 Under-utilized Middle Levels in Ring ORAM Tree
	5.2.4 The EP-ORAM Design
	5.2.5 Security Analysis

	5.3 Evaluation
	5.3.1 DRAM Space, NVM Traffic and Performance Analysis
	5.3.2 EP-ORAM Design Exploration
	5.3.3 Utilization Analysis
	5.3.4 Conclusion


	6.0 Conclusions
	6.1 Summary
	6.2 Future Work
	6.2.1 ORAM for Recommendation Systems
	6.2.2 Merkle Tree for Position Map Access Reduction


	Bibliography

